Abstract

In this study, we used the autocloning effect on pyramid structures to develop broad-bandwidth, omnidirectional antireflection structures for silicon solar cells. The angular dependence of reflectance on several pyramid structures was systematically investigated. The deposition of three-layer autocloned films reduced the refractive index gap between air and silicon, resulting in an increase in the amount of transmitted light and a decrease in the total light escaping. The average reflectance decreased dramatically to ca. 2–3% at incident angles from 0 to 60° for both sub-wavelength– and micrometer–scale pyramid structures. The measured reflectance of the autocloned structure was less than 4% in the wavelength range from 400 to 1000 nm for incident angles from 0 to 60°. Therefore, the autocloning technique, combined with optical thin films and optical gradient structures, is a practical and compatible method for the fabrication of broad-bandwidth, omnidirectional antireflection structures on silicon solar cells.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Hylton, A. R. Burgers, and W. C. Sinke, “Alkaline etching for reflectance reduction in multicrystalline silicon solar cells,” J. Electrochem. Soc. 151(6), G408–G427 (2004).
    [CrossRef]
  2. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
    [CrossRef]
  3. B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
    [CrossRef]
  4. M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Synthesis and characterization of well-aligned quantum silicon nanowires arrays,” Composites, Part B 35(2), 179–184 (2004).
    [CrossRef]
  5. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [CrossRef]
  6. C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
    [CrossRef]
  7. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
    [CrossRef]
  8. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristic,” Appl. Phys. Lett. 93(25), 251108 (2008).
    [CrossRef]
  9. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  10. M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
    [CrossRef] [PubMed]
  11. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983).
    [CrossRef] [PubMed]
  12. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [CrossRef]
  13. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
    [CrossRef]
  14. C. Y. Huang, H. Min Ku, and S. Chao, “Surface profile control of the autocloned photonic crystal by ion-beam-sputter deposition with radio-frequency-bias etching,” Appl. Opt. 48(1), 69–73 (2009).
    [CrossRef]
  15. T. H. Chang, S. H. Chen, C. C. Lee, and H. L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516(6), 1051–1055 (2008).
    [CrossRef]
  16. Y. Ohtera, K. Miura, and T. Kawashima, “Ge/SiO2 photonic crystal multichannel wavelength filters for short wave infrared wavelengths,” Jpn. J. Appl. Phys. 46(4A4A), 1511–1515 (2007).
    [CrossRef]
  17. Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, “Multichannel photonic crystal wavelength filter array for near-infrared wavelengths,” J. Lightwave Technol. 25(2), 499–503 (2007).
    [CrossRef]
  18. H. L. Chen, H. F. Lee, W. C. Chao, C. I. Hsieh, F. H. Ko, and T. C. Chu, “Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition,” J. Vac. Sci. Technol. B 22(6), 3359–3362 (2004).
    [CrossRef]

2009

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

C. Y. Huang, H. Min Ku, and S. Chao, “Surface profile control of the autocloned photonic crystal by ion-beam-sputter deposition with radio-frequency-bias etching,” Appl. Opt. 48(1), 69–73 (2009).
[CrossRef]

2008

T. H. Chang, S. H. Chen, C. C. Lee, and H. L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516(6), 1051–1055 (2008).
[CrossRef]

M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
[CrossRef] [PubMed]

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristic,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

2007

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[CrossRef]

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Y. Ohtera, K. Miura, and T. Kawashima, “Ge/SiO2 photonic crystal multichannel wavelength filters for short wave infrared wavelengths,” Jpn. J. Appl. Phys. 46(4A4A), 1511–1515 (2007).
[CrossRef]

Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, “Multichannel photonic crystal wavelength filter array for near-infrared wavelengths,” J. Lightwave Technol. 25(2), 499–503 (2007).
[CrossRef]

2005

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef]

2004

J. D. Hylton, A. R. Burgers, and W. C. Sinke, “Alkaline etching for reflectance reduction in multicrystalline silicon solar cells,” J. Electrochem. Soc. 151(6), G408–G427 (2004).
[CrossRef]

M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Synthesis and characterization of well-aligned quantum silicon nanowires arrays,” Composites, Part B 35(2), 179–184 (2004).
[CrossRef]

H. L. Chen, H. F. Lee, W. C. Chao, C. I. Hsieh, F. H. Ko, and T. C. Chu, “Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition,” J. Vac. Sci. Technol. B 22(6), 3359–3362 (2004).
[CrossRef]

1983

Arafune, K.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Atwater, H. A.

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[CrossRef]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

Burgers, A. R.

J. D. Hylton, A. R. Burgers, and W. C. Sinke, “Alkaline etching for reflectance reduction in multicrystalline silicon solar cells,” J. Electrochem. Soc. 151(6), G408–G427 (2004).
[CrossRef]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Chang, T. H.

T. H. Chang, S. H. Chen, C. C. Lee, and H. L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516(6), 1051–1055 (2008).
[CrossRef]

Chang, Y. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chao, S.

Chao, W. C.

H. L. Chen, H. F. Lee, W. C. Chao, C. I. Hsieh, F. H. Ko, and T. C. Chu, “Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition,” J. Vac. Sci. Technol. B 22(6), 3359–3362 (2004).
[CrossRef]

Chattopadhyay, S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, H. L.

T. H. Chang, S. H. Chen, C. C. Lee, and H. L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516(6), 1051–1055 (2008).
[CrossRef]

H. L. Chen, H. F. Lee, W. C. Chao, C. I. Hsieh, F. H. Ko, and T. C. Chu, “Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition,” J. Vac. Sci. Technol. B 22(6), 3359–3362 (2004).
[CrossRef]

Chen, K. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, L. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, M.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Chen, S. H.

T. H. Chang, S. H. Chen, C. C. Lee, and H. L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516(6), 1051–1055 (2008).
[CrossRef]

Chhajed, S.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristic,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

Chu, T. C.

H. L. Chen, H. F. Lee, W. C. Chao, C. I. Hsieh, F. H. Ko, and T. C. Chu, “Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition,” J. Vac. Sci. Technol. B 22(6), 3359–3362 (2004).
[CrossRef]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Cui, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Fan, S.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Filler, M. A.

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[CrossRef]

Fujii, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Guo, X. Y.

M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Synthesis and characterization of well-aligned quantum silicon nanowires arrays,” Composites, Part B 35(2), 179–184 (2004).
[CrossRef]

Hsieh, C. I.

H. L. Chen, H. F. Lee, W. C. Chao, C. I. Hsieh, F. H. Ko, and T. C. Chu, “Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition,” J. Vac. Sci. Technol. B 22(6), 3359–3362 (2004).
[CrossRef]

Hsu, C. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Hsu, C. M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Hsu, Y. K.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Huang, C. Y.

Huang, Y. F.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Hylton, J. D.

J. D. Hylton, A. R. Burgers, and W. C. Sinke, “Alkaline etching for reflectance reduction in multicrystalline silicon solar cells,” J. Electrochem. Soc. 151(6), G408–G427 (2004).
[CrossRef]

Inoue, Y.

Jen, Y. J.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Jiang, B.

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Jiang, P.

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Kanamori, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Kawakami, S.

Kawashima, T.

Y. Ohtera, K. Miura, and T. Kawashima, “Ge/SiO2 photonic crystal multichannel wavelength filters for short wave infrared wavelengths,” Jpn. J. Appl. Phys. 46(4A4A), 1511–1515 (2007).
[CrossRef]

Kayes, B. M.

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[CrossRef]

Kelzenberg, M. D.

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[CrossRef]

Kim, J. K.

M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
[CrossRef] [PubMed]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristic,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Kim, Y. S.

Ko, F. H.

H. L. Chen, H. F. Lee, W. C. Chao, C. I. Hsieh, F. H. Ko, and T. C. Chu, “Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition,” J. Vac. Sci. Technol. B 22(6), 3359–3362 (2004).
[CrossRef]

Kong, L. B.

M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Synthesis and characterization of well-aligned quantum silicon nanowires arrays,” Composites, Part B 35(2), 179–184 (2004).
[CrossRef]

Kuo, M. L.

Lee, C. C.

T. H. Chang, S. H. Chen, C. C. Lee, and H. L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516(6), 1051–1055 (2008).
[CrossRef]

Lee, C. S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Lee, H. F.

H. L. Chen, H. F. Lee, W. C. Chao, C. I. Hsieh, F. H. Ko, and T. C. Chu, “Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition,” J. Vac. Sci. Technol. B 22(6), 3359–3362 (2004).
[CrossRef]

Lee, S. T.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef]

Lewis, N. S.

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[CrossRef]

Li, H. L.

M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Synthesis and characterization of well-aligned quantum silicon nanowires arrays,” Composites, Part B 35(2), 179–184 (2004).
[CrossRef]

Li, M. K.

M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Synthesis and characterization of well-aligned quantum silicon nanowires arrays,” Composites, Part B 35(2), 179–184 (2004).
[CrossRef]

Lin, S. Y.

M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
[CrossRef] [PubMed]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Liu, T. A.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Liu, W.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Lo, H. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Lu, M.

M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Synthesis and characterization of well-aligned quantum silicon nanowires arrays,” Composites, Part B 35(2), 179–184 (2004).
[CrossRef]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Min Ku, H.

Miura, K.

Y. Ohtera, K. Miura, and T. Kawashima, “Ge/SiO2 photonic crystal multichannel wavelength filters for short wave infrared wavelengths,” Jpn. J. Appl. Phys. 46(4A4A), 1511–1515 (2007).
[CrossRef]

Mont, F. W.

Ohshita, Y.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Ohtera, Y.

Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, “Multichannel photonic crystal wavelength filter array for near-infrared wavelengths,” J. Lightwave Technol. 25(2), 499–503 (2007).
[CrossRef]

Y. Ohtera, K. Miura, and T. Kawashima, “Ge/SiO2 photonic crystal multichannel wavelength filters for short wave infrared wavelengths,” Jpn. J. Appl. Phys. 46(4A4A), 1511–1515 (2007).
[CrossRef]

Onuki, T.

Pan, C. L.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Peng, C. Y.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Peng, K.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef]

Poxson, D. J.

Putnam, M. C.

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[CrossRef]

Sai, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Schubert, E. F.

M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
[CrossRef] [PubMed]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristic,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schubert, M. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristic,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Sinke, W. C.

J. D. Hylton, A. R. Burgers, and W. C. Sinke, “Alkaline etching for reflectance reduction in multicrystalline silicon solar cells,” J. Electrochem. Soc. 151(6), G408–G427 (2004).
[CrossRef]

Smart, J. A.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Southwell, W. H.

Sun, C. H.

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Wu, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef]

Xi, J. Q.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef]

Yamaguchi, M.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Yan, Y.

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef]

Yu, Z.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Yugami, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, “Growth of vertically aligned Si wire arrays over large areas with Au and Cu catalysts,” Appl. Phys. Lett. 91(10), 103110 (2007).
[CrossRef]

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristic,” Appl. Phys. Lett. 93(25), 251108 (2008).
[CrossRef]

Composites, Part B

M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Synthesis and characterization of well-aligned quantum silicon nanowires arrays,” Composites, Part B 35(2), 179–184 (2004).
[CrossRef]

J. Electrochem. Soc.

J. D. Hylton, A. R. Burgers, and W. C. Sinke, “Alkaline etching for reflectance reduction in multicrystalline silicon solar cells,” J. Electrochem. Soc. 151(6), G408–G427 (2004).
[CrossRef]

J. Lightwave Technol.

J. Vac. Sci. Technol. B

H. L. Chen, H. F. Lee, W. C. Chao, C. I. Hsieh, F. H. Ko, and T. C. Chu, “Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition,” J. Vac. Sci. Technol. B 22(6), 3359–3362 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Ohtera, K. Miura, and T. Kawashima, “Ge/SiO2 photonic crystal multichannel wavelength filters for short wave infrared wavelengths,” Jpn. J. Appl. Phys. 46(4A4A), 1511–1515 (2007).
[CrossRef]

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells,” Jpn. J. Appl. Phys. 46(6A6A), 3333–3336 (2007).
[CrossRef]

Nano Lett.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Nat. Nanotechnol.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Nat. Photonics

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Opt. Lett.

Small

K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005).
[CrossRef]

Thin Solid Films

T. H. Chang, S. H. Chen, C. C. Lee, and H. L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516(6), 1051–1055 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of the autocloning technique. (a) Geometric setup of the simulation in the RCWA method. (b) Process flow for the fabrication of autocloned multilayer films on textured structures.

Fig. 2
Fig. 2

(a) Reflectance spectra of closed-packed Si pyramids having periods of 0.1, 0.5, and 5 μm. (b) Average reflectance of close-packed Si pyramids of various periods.

Fig. 3
Fig. 3

(a) Average reflectance of Si pyramids having periods of 0.5 and 5 μm as a function of the incident angle. (b-d) Reflectance spectra of (b) a single-layer Si3N4 film, (c) a gradient index of three-layer films, and (d) a Si nanotip structure at incident angles of 0 (blue line) and 60° (red line). Insets to (b-d): Schematic representations of the three kinds of antireflective structures.

Fig. 4
Fig. 4

(a, b) Schematic representations of (a) multilayer optical thin films and (b) multilayer thin films deposited using the autocloning technique. (c) Cross-sectional SEM image of the autocloned films on a textured Si substrate. (d, e) Reflectance spectra of Si pyramid structures having periods of (d) 0.5 and (e) 5 μm, before (blue line) and after (red line) deposition of the three-layer autocloned films.

Fig. 5
Fig. 5

Average reflectance of Si pyramids having periods of (a) 0.5 and (b) 5 μm, before (black line) and after (red line) deposition of the three-layer autocloned films, plotted as a function of the incident angle.

Fig. 6
Fig. 6

3D-FDTD simulations of plane waves propagating into (a, b) Si pyramid structures having a period of 0.5 μm (a) at normal incidence and (b) at an incident angle of 45° and (c, d) autocloned films on pyramid structures having a period of 0.5 μm (c) at normal incidence and (d) at an incident angle of 45°.

Fig. 7
Fig. 7

(a–c) 3D-FDTD simulations of normal-incidence plane waves propagating into (a, b) autocloned films on Si pyramid structures having periods of (a) 5 and (b) 0.5 μm and (c) a nanotip structure having a period of 0.2 μm and a height of 1.6 μm. (d) Calculated power fluxes of an autocloned pyramid structure having a period of 0.5 μm (blue line) and of a nanotip structure having a period of 0.2 μm (red line), plotted as a function of the position below the bottom of the AR structure.

Fig. 8
Fig. 8

Measured average reflectance of Si pyramid structures in the absence (black line) and presence (red line) of autocloned films, plotted as a function of the incident angle.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R a v g ( θ ) = 400 n m 1000 n m R ( λ , θ ) d λ
R t o t a l a v g = 0 60 R a v g ( θ ) d θ

Metrics