Abstract

This paper reports our latest results using colloidal CuInSe2 nanocrystal inks to prepare photovoltaic (PV) devices. Thus far, devices with nanocrystal layers processed under ambient conditions with no post-deposition treatment have achieved power conversion efficiencies of up to 3.1%. Device efficiency is largely limited by charge carrier trapping in the nanocrystal layer, and the highest device efficiencies are obtained with very thin layers—less than 150 nm—absorbing only a fraction of the incident light. Devices with thicker nanocrystal layers had lower power conversion efficiency, despite the increased photon absorption, because the internal quantum efficiency of the devices decreased significantly. The thin, most efficient devices exhibited internal quantum efficiencies as high as 40%, across a wide spectrum. Mott-Schottky measurements revealed that the active region thickness in the devices is approximately 50 nm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Grätzel, “Photovoltaic and photoelectrochemical conversion of solar energy,” Philos. Trans. R. Soc. Lond. 365(1853), 993–1005 (2007).
    [CrossRef]
  2. R. Po, M. Maggini, and N. Camaioni, “Polymer solar cells: recent approaches and achievements,” J. Phys. Chem. C 114(2), 695–706 (2010).
    [CrossRef]
  3. L. L. Kazmerski, “Solar photovoltaics R&D at the tipping point: A 2005 technology overview,” J. Electron Spectrosc. Relat. Phenom. 150(2-3), 105–135 (2006).
    [CrossRef]
  4. P. T. Landsberg, H. Nussbaumer, and G. Willeke, “Band-band impact ionization and solar cell efficiency,” J. Appl. Phys. 74(2), 1451–1452 (1993).
    [CrossRef]
  5. A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
    [CrossRef]
  6. K. E. Knapp, and T. L. Jester, “Energy balances for photovoltaic modules: status and prospects” Proc. of 28th IEEE Photovoltaic Specialist Conf, Piscataway (2000).
  7. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
    [CrossRef] [PubMed]
  8. A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1-2), 115–120 (2002).
    [CrossRef]
  9. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005).
    [CrossRef] [PubMed]
  10. J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, “Schottky solar cells based on colloidal nanocrystal films,” Nano Lett. 8(10), 3488–3492 (2008).
    [CrossRef] [PubMed]
  11. W. Ma, J. M. Luther, H. Zheng, Y. Wu, and A. P. Alivisatos, “Photovoltaic devices employing ternary PbSxSe1-x nanocrystals,” Nano Lett. 9(4), 1699–1703 (2009).
    [CrossRef] [PubMed]
  12. G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
    [CrossRef]
  13. J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
    [CrossRef] [PubMed]
  14. A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
    [CrossRef] [PubMed]
  15. M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. Am. Chem. Soc. 130(49), 16770–16777 (2008).
    [CrossRef] [PubMed]
  16. C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, “Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics,” J. Am. Chem. Soc. 131(35), 12554–12555 (2009).
    [CrossRef] [PubMed]
  17. Q. Guo, H. W. Hillhouse, and R. Agrawal, “Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells,” J. Am. Chem. Soc. 131(33), 11672–11673 (2009).
    [CrossRef] [PubMed]
  18. Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of copper(I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
    [CrossRef] [PubMed]
  19. L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K.-O. Velthaus, and H.-W. Schock, “ZnO/CdS/CuInSe2 thin-film solar cells with improved performance,” Appl. Phys. Lett. 62(6), 597–599 (1993).
    [CrossRef]
  20. B. E. McCandless, and W. N. Shafarman, U.S. Patent 6,537,845, 2003.
  21. A. O. Pudov, J. R. Sites, M. A. Contreras, T. Nakada, and H.-W. Schock, “CIGS J-V distortion in the absence of blue photons,” Thin Solid Films 480–481, 273–278 (2005).
    [CrossRef]
  22. U. Rau and H. W. Schock, “Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges,” Appl. Phys., A Mater. Sci. Process. 69(2), 131–147 (1999).
    [CrossRef]
  23. A. Niemegeers, M. Burgelman, and A. De Vos, “On the CdS/CuInSe2 conduction band discontinuity,” Appl. Phys. Lett. 67(6), 843–845 (1995).
    [CrossRef]
  24. M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
    [CrossRef]
  25. V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, and B. A. Korgel, “Nanocrystal Inks: towards a new generation of low cost photovoltaics,” Mod. Energy Rev. In press.

2010 (3)

R. Po, M. Maggini, and N. Camaioni, “Polymer solar cells: recent approaches and achievements,” J. Phys. Chem. C 114(2), 695–706 (2010).
[CrossRef]

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[CrossRef] [PubMed]

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

2009 (4)

W. Ma, J. M. Luther, H. Zheng, Y. Wu, and A. P. Alivisatos, “Photovoltaic devices employing ternary PbSxSe1-x nanocrystals,” Nano Lett. 9(4), 1699–1703 (2009).
[CrossRef] [PubMed]

C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, “Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics,” J. Am. Chem. Soc. 131(35), 12554–12555 (2009).
[CrossRef] [PubMed]

Q. Guo, H. W. Hillhouse, and R. Agrawal, “Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells,” J. Am. Chem. Soc. 131(33), 11672–11673 (2009).
[CrossRef] [PubMed]

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

2008 (4)

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of copper(I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
[CrossRef] [PubMed]

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[CrossRef]

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. Am. Chem. Soc. 130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, “Schottky solar cells based on colloidal nanocrystal films,” Nano Lett. 8(10), 3488–3492 (2008).
[CrossRef] [PubMed]

2007 (1)

M. Grätzel, “Photovoltaic and photoelectrochemical conversion of solar energy,” Philos. Trans. R. Soc. Lond. 365(1853), 993–1005 (2007).
[CrossRef]

2006 (1)

L. L. Kazmerski, “Solar photovoltaics R&D at the tipping point: A 2005 technology overview,” J. Electron Spectrosc. Relat. Phenom. 150(2-3), 105–135 (2006).
[CrossRef]

2005 (2)

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005).
[CrossRef] [PubMed]

A. O. Pudov, J. R. Sites, M. A. Contreras, T. Nakada, and H.-W. Schock, “CIGS J-V distortion in the absence of blue photons,” Thin Solid Films 480–481, 273–278 (2005).
[CrossRef]

2002 (1)

A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1-2), 115–120 (2002).
[CrossRef]

1999 (1)

U. Rau and H. W. Schock, “Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges,” Appl. Phys., A Mater. Sci. Process. 69(2), 131–147 (1999).
[CrossRef]

1997 (2)

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

1995 (1)

A. Niemegeers, M. Burgelman, and A. De Vos, “On the CdS/CuInSe2 conduction band discontinuity,” Appl. Phys. Lett. 67(6), 843–845 (1995).
[CrossRef]

1993 (2)

P. T. Landsberg, H. Nussbaumer, and G. Willeke, “Band-band impact ionization and solar cell efficiency,” J. Appl. Phys. 74(2), 1451–1452 (1993).
[CrossRef]

L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K.-O. Velthaus, and H.-W. Schock, “ZnO/CdS/CuInSe2 thin-film solar cells with improved performance,” Appl. Phys. Lett. 62(6), 597–599 (1993).
[CrossRef]

Abruña, H. D.

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Agrawal, R.

Q. Guo, H. W. Hillhouse, and R. Agrawal, “Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells,” J. Am. Chem. Soc. 131(33), 11672–11673 (2009).
[CrossRef] [PubMed]

Akhavan, V.

C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, “Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics,” J. Am. Chem. Soc. 131(35), 12554–12555 (2009).
[CrossRef] [PubMed]

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. Am. Chem. Soc. 130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Akhavan, V. A.

V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, and B. A. Korgel, “Nanocrystal Inks: towards a new generation of low cost photovoltaics,” Mod. Energy Rev. In press.

Alivisatos, A. P.

W. Ma, J. M. Luther, H. Zheng, Y. Wu, and A. P. Alivisatos, “Photovoltaic devices employing ternary PbSxSe1-x nanocrystals,” Nano Lett. 9(4), 1699–1703 (2009).
[CrossRef] [PubMed]

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of copper(I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
[CrossRef] [PubMed]

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Barbara, P. F.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. Am. Chem. Soc. 130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Barkhouse, A. R.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Bartnik, A. C.

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Beard, M. C.

J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, “Schottky solar cells based on colloidal nanocrystal films,” Nano Lett. 8(10), 3488–3492 (2008).
[CrossRef] [PubMed]

Burgelman, M.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

A. Niemegeers, M. Burgelman, and A. De Vos, “On the CdS/CuInSe2 conduction band discontinuity,” Appl. Phys. Lett. 67(6), 843–845 (1995).
[CrossRef]

Camaioni, N.

R. Po, M. Maggini, and N. Camaioni, “Polymer solar cells: recent approaches and achievements,” J. Phys. Chem. C 114(2), 695–706 (2010).
[CrossRef]

Choi, J. J.

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Contreras, M. A.

A. O. Pudov, J. R. Sites, M. A. Contreras, T. Nakada, and H.-W. Schock, “CIGS J-V distortion in the absence of blue photons,” Thin Solid Films 480–481, 273–278 (2005).
[CrossRef]

De Vos, A.

A. Niemegeers, M. Burgelman, and A. De Vos, “On the CdS/CuInSe2 conduction band discontinuity,” Appl. Phys. Lett. 67(6), 843–845 (1995).
[CrossRef]

Debnath, R.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Dodabalapur, A.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. Am. Chem. Soc. 130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Dunn, L.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. Am. Chem. Soc. 130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Ellingson, R. J.

J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, “Schottky solar cells based on colloidal nanocrystal films,” Nano Lett. 8(10), 3488–3492 (2008).
[CrossRef] [PubMed]

Engelhardt, F.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

Fromer, N. A.

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Geier, M. L.

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Goedhart, A.

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Goodfellow, B.

C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, “Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics,” J. Am. Chem. Soc. 131(35), 12554–12555 (2009).
[CrossRef] [PubMed]

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. Am. Chem. Soc. 130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Goodfellow, B. W.

V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, and B. A. Korgel, “Nanocrystal Inks: towards a new generation of low cost photovoltaics,” Mod. Energy Rev. In press.

Grätzel, M.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

M. Grätzel, “Photovoltaic and photoelectrochemical conversion of solar energy,” Philos. Trans. R. Soc. Lond. 365(1853), 993–1005 (2007).
[CrossRef]

Guillemoles, J. F.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

Guo, Q.

Q. Guo, H. W. Hillhouse, and R. Agrawal, “Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells,” J. Am. Chem. Soc. 131(33), 11672–11673 (2009).
[CrossRef] [PubMed]

Gur, I.

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Hanrath, T.

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Hedström, J.

L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K.-O. Velthaus, and H.-W. Schock, “ZnO/CdS/CuInSe2 thin-film solar cells with improved performance,” Appl. Phys. Lett. 62(6), 597–599 (1993).
[CrossRef]

Herberholz, R.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

Hillhouse, H. W.

Q. Guo, H. W. Hillhouse, and R. Agrawal, “Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells,” J. Am. Chem. Soc. 131(33), 11672–11673 (2009).
[CrossRef] [PubMed]

Hinds, S.

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[CrossRef]

Hyun, B. R.

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Igalson, M.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

Kazmerski, L. L.

L. L. Kazmerski, “Solar photovoltaics R&D at the tipping point: A 2005 technology overview,” J. Electron Spectrosc. Relat. Phenom. 150(2-3), 105–135 (2006).
[CrossRef]

Kessler, J.

L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K.-O. Velthaus, and H.-W. Schock, “ZnO/CdS/CuInSe2 thin-film solar cells with improved performance,” Appl. Phys. Lett. 62(6), 597–599 (1993).
[CrossRef]

Klenk, R.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

Koleilat, G. I.

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[CrossRef]

Konstantatos, G.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Koo, B.

C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, “Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics,” J. Am. Chem. Soc. 131(35), 12554–12555 (2009).
[CrossRef] [PubMed]

Korgel, B. A.

C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, “Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics,” J. Am. Chem. Soc. 131(35), 12554–12555 (2009).
[CrossRef] [PubMed]

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. Am. Chem. Soc. 130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, and B. A. Korgel, “Nanocrystal Inks: towards a new generation of low cost photovoltaics,” Mod. Energy Rev. In press.

Kramer, I. J.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Lampert, M.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

Landsberg, P. T.

P. T. Landsberg, H. Nussbaumer, and G. Willeke, “Band-band impact ionization and solar cell efficiency,” J. Appl. Phys. 74(2), 1451–1452 (1993).
[CrossRef]

Law, M.

J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, “Schottky solar cells based on colloidal nanocrystal films,” Nano Lett. 8(10), 3488–3492 (2008).
[CrossRef] [PubMed]

Levina, L.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[CrossRef]

Li, G.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Liang, Y.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Lim, Y. F.

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Luque, A.

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

Luther, J. M.

W. Ma, J. M. Luther, H. Zheng, Y. Wu, and A. P. Alivisatos, “Photovoltaic devices employing ternary PbSxSe1-x nanocrystals,” Nano Lett. 9(4), 1699–1703 (2009).
[CrossRef] [PubMed]

J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, “Schottky solar cells based on colloidal nanocrystal films,” Nano Lett. 8(10), 3488–3492 (2008).
[CrossRef] [PubMed]

Ma, W.

W. Ma, J. M. Luther, H. Zheng, Y. Wu, and A. P. Alivisatos, “Photovoltaic devices employing ternary PbSxSe1-x nanocrystals,” Nano Lett. 9(4), 1699–1703 (2009).
[CrossRef] [PubMed]

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of copper(I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
[CrossRef] [PubMed]

Maggini, M.

R. Po, M. Maggini, and N. Camaioni, “Polymer solar cells: recent approaches and achievements,” J. Phys. Chem. C 114(2), 695–706 (2010).
[CrossRef]

Malliaras, G. G.

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Marti, A.

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

Meyer, T.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

Myrskog, S. H.

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[CrossRef]

Nadenau, V.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

Nakada, T.

A. O. Pudov, J. R. Sites, M. A. Contreras, T. Nakada, and H.-W. Schock, “CIGS J-V distortion in the absence of blue photons,” Thin Solid Films 480–481, 273–278 (2005).
[CrossRef]

Nazeeruddin, M. K.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Niemegeers, A.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

A. Niemegeers, M. Burgelman, and A. De Vos, “On the CdS/CuInSe2 conduction band discontinuity,” Appl. Phys. Lett. 67(6), 843–845 (1995).
[CrossRef]

Nozik, A. J.

J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, “Schottky solar cells based on colloidal nanocrystal films,” Nano Lett. 8(10), 3488–3492 (2008).
[CrossRef] [PubMed]

A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1-2), 115–120 (2002).
[CrossRef]

Nussbaumer, H.

P. T. Landsberg, H. Nussbaumer, and G. Willeke, “Band-band impact ionization and solar cell efficiency,” J. Appl. Phys. 74(2), 1451–1452 (1993).
[CrossRef]

Oh, M.

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Panthani, M. G.

C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, “Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics,” J. Am. Chem. Soc. 131(35), 12554–12555 (2009).
[CrossRef] [PubMed]

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. Am. Chem. Soc. 130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, and B. A. Korgel, “Nanocrystal Inks: towards a new generation of low cost photovoltaics,” Mod. Energy Rev. In press.

Parisi, J.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

Pattantyus-Abraham, A. G.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[CrossRef]

Po, R.

R. Po, M. Maggini, and N. Camaioni, “Polymer solar cells: recent approaches and achievements,” J. Phys. Chem. C 114(2), 695–706 (2010).
[CrossRef]

Pudov, A. O.

A. O. Pudov, J. R. Sites, M. A. Contreras, T. Nakada, and H.-W. Schock, “CIGS J-V distortion in the absence of blue photons,” Thin Solid Films 480–481, 273–278 (2005).
[CrossRef]

Raabe, I.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Rau, U.

U. Rau and H. W. Schock, “Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges,” Appl. Phys., A Mater. Sci. Process. 69(2), 131–147 (1999).
[CrossRef]

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

Ray, C.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Reese, M. O.

J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, “Schottky solar cells based on colloidal nanocrystal films,” Nano Lett. 8(10), 3488–3492 (2008).
[CrossRef] [PubMed]

Ruckh, M.

L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K.-O. Velthaus, and H.-W. Schock, “ZnO/CdS/CuInSe2 thin-film solar cells with improved performance,” Appl. Phys. Lett. 62(6), 597–599 (1993).
[CrossRef]

Sadtler, B.

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of copper(I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
[CrossRef] [PubMed]

Santiago-Berrios, M. B.

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Sargent, E. H.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[CrossRef]

Schmidtke, J. P.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. Am. Chem. Soc. 130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

Schmitt, M.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

Schock, H. W.

U. Rau and H. W. Schock, “Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges,” Appl. Phys., A Mater. Sci. Process. 69(2), 131–147 (1999).
[CrossRef]

Schock, H.-W.

A. O. Pudov, J. R. Sites, M. A. Contreras, T. Nakada, and H.-W. Schock, “CIGS J-V distortion in the absence of blue photons,” Thin Solid Films 480–481, 273–278 (2005).
[CrossRef]

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K.-O. Velthaus, and H.-W. Schock, “ZnO/CdS/CuInSe2 thin-film solar cells with improved performance,” Appl. Phys. Lett. 62(6), 597–599 (1993).
[CrossRef]

Seifert, O.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

Shukla, H.

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[CrossRef]

Sites, J. R.

A. O. Pudov, J. R. Sites, M. A. Contreras, T. Nakada, and H.-W. Schock, “CIGS J-V distortion in the absence of blue photons,” Thin Solid Films 480–481, 273–278 (2005).
[CrossRef]

Song, Q.

J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, “Schottky solar cells based on colloidal nanocrystal films,” Nano Lett. 8(10), 3488–3492 (2008).
[CrossRef] [PubMed]

Steinhagen, C.

C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, “Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics,” J. Am. Chem. Soc. 131(35), 12554–12555 (2009).
[CrossRef] [PubMed]

Stolt, L.

L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K.-O. Velthaus, and H.-W. Schock, “ZnO/CdS/CuInSe2 thin-film solar cells with improved performance,” Appl. Phys. Lett. 62(6), 597–599 (1993).
[CrossRef]

Sun, L.

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Tsai, S.-T.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Velthaus, K.-O.

L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K.-O. Velthaus, and H.-W. Schock, “ZnO/CdS/CuInSe2 thin-film solar cells with improved performance,” Appl. Phys. Lett. 62(6), 597–599 (1993).
[CrossRef]

Wadia, C.

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of copper(I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
[CrossRef] [PubMed]

Walter, T.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

Wang, X.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Willeke, G.

P. T. Landsberg, H. Nussbaumer, and G. Willeke, “Band-band impact ionization and solar cell efficiency,” J. Appl. Phys. 74(2), 1451–1452 (1993).
[CrossRef]

Wise, F. W.

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Wu, Y.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[CrossRef] [PubMed]

W. Ma, J. M. Luther, H. Zheng, Y. Wu, and A. P. Alivisatos, “Photovoltaic devices employing ternary PbSxSe1-x nanocrystals,” Nano Lett. 9(4), 1699–1703 (2009).
[CrossRef] [PubMed]

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of copper(I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
[CrossRef] [PubMed]

Xia, J.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Xu, Z.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Yu, L.

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Zheng, H.

W. Ma, J. M. Luther, H. Zheng, Y. Wu, and A. P. Alivisatos, “Photovoltaic devices employing ternary PbSxSe1-x nanocrystals,” Nano Lett. 9(4), 1699–1703 (2009).
[CrossRef] [PubMed]

Zott, S.

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

ACS Nano (2)

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, “Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots,” ACS Nano 2(5), 833–840 (2008).
[CrossRef]

Adv. Mater. (1)

Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22(20), E135–E138 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K.-O. Velthaus, and H.-W. Schock, “ZnO/CdS/CuInSe2 thin-film solar cells with improved performance,” Appl. Phys. Lett. 62(6), 597–599 (1993).
[CrossRef]

A. Niemegeers, M. Burgelman, and A. De Vos, “On the CdS/CuInSe2 conduction band discontinuity,” Appl. Phys. Lett. 67(6), 843–845 (1995).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

U. Rau and H. W. Schock, “Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges,” Appl. Phys., A Mater. Sci. Process. 69(2), 131–147 (1999).
[CrossRef]

J. Am. Chem. Soc. (3)

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. Am. Chem. Soc. 130(49), 16770–16777 (2008).
[CrossRef] [PubMed]

C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, “Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics,” J. Am. Chem. Soc. 131(35), 12554–12555 (2009).
[CrossRef] [PubMed]

Q. Guo, H. W. Hillhouse, and R. Agrawal, “Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells,” J. Am. Chem. Soc. 131(33), 11672–11673 (2009).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

P. T. Landsberg, H. Nussbaumer, and G. Willeke, “Band-band impact ionization and solar cell efficiency,” J. Appl. Phys. 74(2), 1451–1452 (1993).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom. (1)

L. L. Kazmerski, “Solar photovoltaics R&D at the tipping point: A 2005 technology overview,” J. Electron Spectrosc. Relat. Phenom. 150(2-3), 105–135 (2006).
[CrossRef]

J. Phys. Chem. C (1)

R. Po, M. Maggini, and N. Camaioni, “Polymer solar cells: recent approaches and achievements,” J. Phys. Chem. C 114(2), 695–706 (2010).
[CrossRef]

Mod. Energy Rev. (1)

V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, and B. A. Korgel, “Nanocrystal Inks: towards a new generation of low cost photovoltaics,” Mod. Energy Rev. In press.

Nano Lett. (4)

J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, “Schottky solar cells based on colloidal nanocrystal films,” Nano Lett. 8(10), 3488–3492 (2008).
[CrossRef] [PubMed]

W. Ma, J. M. Luther, H. Zheng, Y. Wu, and A. P. Alivisatos, “Photovoltaic devices employing ternary PbSxSe1-x nanocrystals,” Nano Lett. 9(4), 1699–1703 (2009).
[CrossRef] [PubMed]

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and photovoltaic application of copper(I) sulfide nanocrystals,” Nano Lett. 8(8), 2551–2555 (2008).
[CrossRef] [PubMed]

J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. Lond. (1)

M. Grätzel, “Photovoltaic and photoelectrochemical conversion of solar energy,” Philos. Trans. R. Soc. Lond. 365(1853), 993–1005 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[CrossRef]

Physica E (1)

A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1-2), 115–120 (2002).
[CrossRef]

Prog. Photovoltaics. (1)

M. Burgelman, F. Engelhardt, J. F. Guillemoles, R. Herberholz, M. Igalson, R. Klenk, M. Lampert, T. Meyer, V. Nadenau, A. Niemegeers, J. Parisi, U. Rau, H.-W. Schock, M. Schmitt, O. Seifert, T. Walter, and S. Zott, “Defects in Cu(In,Ga)Se2 semiconductors and their role in the device performance of thin film solar cell,” Prog. Photovoltaics. 5(2), 121–130 (1997).
[CrossRef]

Science (1)

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Thin Solid Films (1)

A. O. Pudov, J. R. Sites, M. A. Contreras, T. Nakada, and H.-W. Schock, “CIGS J-V distortion in the absence of blue photons,” Thin Solid Films 480–481, 273–278 (2005).
[CrossRef]

Other (2)

K. E. Knapp, and T. L. Jester, “Energy balances for photovoltaic modules: status and prospects” Proc. of 28th IEEE Photovoltaic Specialist Conf, Piscataway (2000).

B. E. McCandless, and W. N. Shafarman, U.S. Patent 6,537,845, 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(A, B) TEM images and (C) XRD of the CuInSe2 nanocrystals. The diffraction peaks in (C) are indexed to chalcopyrite CuInSe2 (PDF#97-006-8928). The inset shows the chalcopyrite unit cell of CuInSe2: red, blue and green spheres correspond to copper, indium and selenium atoms, respectively.

Fig. 2
Fig. 2

I-V characteristics of a device with power conversion efficiency of 3.1% under AM1.5 illumination. Dark conditions (black) and under AM1.5 illumination (red). The device parameters are obtained by a best fit of Eq. (1) (solid lines) to the data (○). The parameters from the best fit are listed in Table 1.

Fig. 3
Fig. 3

(A) I-V measurements of a CuInSe2 nanocrystal PV device with a crossover between the light and the dark curves. Using light with wavelength higher than 515 nm, the crossover is still present. By using only low energy photons above 630 nm wavelength, however, the crossover between the dark and light curves is eliminated. (B) Spectra of light used for each illuminated measurement.

Fig. 4
Fig. 4

Band alignment of CuInSe2/CdS/ZnO heterojunction with or without the photo-doping of the CdS buffer layer. Modified from Pudov, et. al. [21]

Fig. 5
Fig. 5

(A) I-V measurements of devices with varying thickness of spray deposited CuInSe2 nanocrystal film and (B) calculated device parameters associated with these devices.

Fig. 6
Fig. 6

(A) IPCE measurements of a set of devices with different thicknesses of the CuInSe2 nanocrystal film thickness shows similar trend between the different thicknesses. (B) Internal quantum efficiency data of the same devices reveals how thinner devices extract photogenerated carriers at a better efficiency.

Fig. 7
Fig. 7

(A) Device architecture used for C-V measurements consists of a simplified junction. (B) One diode model considered for this type of junction to analyze the impedance data. (C) Sample Nyquist plot illustrating the response of the junction at a certain bias; inset provides the parameters gathered from the model fit (solid line) for the equivalent circuit to the raw data (marked by ○). (D) Linear plot of inverse square capacitance of the junction versus applied voltage across the junction, inset provides the gathered parameters based on Mott-Schottky approximation. Area of this device was isolated to 8 mm2. (E) I-V characteristics of the device in the dark (black curve) and under AM 1.5 illumination (red curve); the measured device parameters are provided in the inset.

Tables (1)

Tables Icon

Table 1 Diode performance parameters for the highest efficiency PV device

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

J = J 0 ( e V J A R s n k T + V J A R s J 0 A R s h 1 ) J p h
f ( λ ) T t o p ( λ ) [ 1 T 1 ( λ ) 2 R B C ( λ ) ]
1 C s c 2 = ( 2 q N A ε s ε 0 A 2 ) ( V V b i k T q )
V b i = q 2 ε s ε 0 [ N A x p 2 + N D x n 2 ]
V b i = q N A x p 2 2 ε s ε 0

Metrics