Abstract

Thermodynamic analysis of energy conversion from light-to-chemical, light-to-electric and electric-to-chemical is presented by the case study of water photoelectrolysis on TiO2 surface. It is demonstrated that at the current state-of-the-art energy conversion efficiency of water photoelectrolysis can be increased ∼17 times by separating the processes of solar-to-electric and electric-to-chemical energy conversion and optimizing them independently. This allows to mitigate a high overvoltage of oxygen evolution reaction with respect to thermodynamic EO2/H2O0=1.23V potential as well as spectrally narrow absorbtivity of solar light by TiO2 which determine the low efficiency (∼ 1.0%) of direct light-to-chemical energy conversion. Numerical estimates are provided illustrating practical principles for optimization of the solar energy conversion and storage processes.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fujishima, X. Zhang, D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63, 515–582 (2008).
    [CrossRef]
  2. G. W. Crabtree, N. S. Lewis, “Solar energy conversion,” Physics Today 60, 37 – 42 (2007).
    [CrossRef]
  3. M. Ni, M. K. H. Leung, D. Y. Leung, K. Sumathy, “A review and recent developments in photocatalytic water splitting using TiO2 for hydrogen production,” Renew. and Sustain. Ener. Rev. 11, 401–425 (2007).
    [CrossRef]
  4. P. V. Kamat, “Meeting the clean energy demand: Nanostructure architectures for solar energy conversion,” J. Phys. Chem. C 111, 2834–2860 (2007).
    [CrossRef]
  5. J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. I. functional properties,” Int. J. Hydr. Energ. 32, 2609–2629 (2007).
    [CrossRef]
  6. J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. III. kinetic effects,” Int. J. Hydr. Energ. 32, 2644–2650 (2007).
    [CrossRef]
  7. J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. IV. collective and local factors in photolysis of water,” Int. J. Hydr. Energ. 32, 2651–2659 (2007).
    [CrossRef]
  8. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, “A review on highly-ordered TiO2 nanotube-arrays: fabrication, material properties, and solar energy applications,” Solar Ener. Mat. and Solar Cells 90, 2011–2075 (2006).
    [CrossRef]
  9. A. L. Linsebigler, G. Lu, J.T. Yates, “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results,” Chem. Rev. 95, 735–758 (1995).
    [CrossRef]
  10. T. Tachikawa, M. Fujitsuka, T. Majima, “Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts,” J. Phys. Chem. C 111, 5259– 5275 (2007).
    [CrossRef]
  11. V. M. Aroutiounian, V. M. Arakelyan, G. E. Shahnazaryan, “Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting,” Solar Energy 78, 581–592 (2005).
    [CrossRef]
  12. M. Grätzel, “Photoelectrochemical cells,” Nature 414, 338– 344 (2001).
    [CrossRef] [PubMed]
  13. T. W. Murphy, “Home photovoltaic systems for physicists,” Physics Today, 42– 47 (2008).
    [CrossRef]
  14. A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238, 37–38 (1972).
    [CrossRef] [PubMed]
  15. E. L. Miller, D. Paluselli, B. Marsen, R. E. Rocheleau, “Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes,” Solar Energ. Mat. and Solar Cells 88(2), 131–144 (2005).
    [CrossRef]
  16. Comparison of photon energy with potential E0 = 1.23 V. According to ΔG = –nFE0, where G represents the isobaric-isothermal potential (Gibbs energy) of the reaction or the chemical potential of the substance, n is the number of electrons, and F is the Faraday constant, in the case of formation of water molecule H2 + ½O2 = H2O, one would find: ΔG = −2 × 96500 × 1.23 = −2.37390 × 105 (J mol−1). As there are two H-O bonds in H2O molecule, the energy corresponding to one bond is 18695 J mol−1 or 7.409 × 1023 eV mol−1. Division of the latter value by Avogadro number NA = 6.02 × 1023, gives the energy of one chemical bond, 1.23 eV. This is the minimum photon energy required to break the bond between H and O in H2O molecule.
  17. T. Lana-Villarreal, R. Gomez, “Interfacial electron transfer at TiO2 nanostructured electrodes modified with capped gold nanoparticles: The photoelectrochemistry of water oxidation,” Electrochem. Comm. 7, 1218–1224 (2005).
    [CrossRef]
  18. M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181, 46–55 (2008).
    [CrossRef]
  19. R. Beranek, H. Kisch, “Surface-modified anodic TiO2 films for visible light photocurrent response,” Electrochem. Comm. 9, 761–766 (2007).
    [CrossRef]
  20. Y. Tian, T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
    [CrossRef] [PubMed]
  21. Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414, 625–627 (2001).
    [CrossRef] [PubMed]
  22. J. Juodkazytė, B. Šebeka, P. Kalinauskas, K. Juodkazis, “Light energy accumulation using Ti/RuO2 electrode as capacitor,” J. Sol. Stat. Electrochem. 14, 741–746 (2010).
    [CrossRef]
  23. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
    [CrossRef] [PubMed]
  24. A. Survila, P. Kalinauskas, I. Valsiūnas, “Photoelektrochemical properties of surface layers formed by anodic oxidation of titanium,” Chemija 10, 117–121 (1999).
  25. B. Parkinson, “On the efficiency and stability of photoelectrochemical. devices,” Acc. Chem. Res. 17, 431–437 (1984).
    [CrossRef]
  26. U. S. Avachat, A. H. Jahagirdar, N. G. Dhere, “Multiple bandgap combination of thin film photovoltaic cells and a photoanode for efficient hydrogen and oxygen generation by water splitting,” Solar Energ. Mat. and Solar Cells 90, 2464–2470 (2006).
    [CrossRef]
  27. S. Juodkazis, A. Yamaguchi, H. Ishii, S. Matsuo, H. Takagi, H. Misawa, “Photo-electrochemical deposition of platinum on TiO2 with resolution of tens-of-nm by using a mask elaborated with electron-beam lithography,” Jpn. J. Appl. Phys. 40, 4246–4251 (2001).
    [CrossRef]
  28. P. Salvador, “Kinetic approach to the photocurrent transients in water photoelectrolysis at n-titanium dioxide electrodes. 1. analysis of the ratio of the instantaneous to steady-state photocurrent,” J. Phys. Chem. C 89, 3683–3869 (1985).
  29. K. J. Vetter, Elektrochemische kinetik (Springer-Verlag, Berlin-Gottingen, 1961).
  30. N. Sato, Electrochemistry at metal and semiconductor electrodes (Elsevier Science, Amsterdam, 1998).
  31. M. Pourbaix, Atlas d’équilibres électrochimiques (Gauthier-Villars, Paris, 1963).
    [PubMed]
  32. K. Juodkazis, J. Juodkazytė, T. Juodienė, V. Šukienė, I. Savickaja, “Alternative view of anodic surface oxidation of noble metals,” Electrochimica Acta 51, 6159–6164 (2006).
    [CrossRef]
  33. K. Juodkazis, J. Juodkazytė, Y. Tabuchi, S. Juodkazis, S. Matsuo, H. Misawa, “Deposition of platinum and irridium on Ti surface using femtosecond laser and electrochemical activation,” Lith. J. Phys. 43, 209–216 (2003).
  34. D. Dobos, Electrochemical Data (Mir, Moscow, 1980).
  35. P. Salvador, C. Gutierrez, “The nature of surface states involved in the photo- and electroluminescence spectra of n-titanium dioxide electrodes,” J. Phys. Chem. C 84, 3696–3698 (1984).
  36. C. Gutierrez, P. Salvador, “Mechanisms of competitive photoelectrochemical oxidation of I and H2O at n-TiO2 electrodes: A kinetic approach,” J. Electrochem. Soc. 133, 924–929 (1986).
    [CrossRef]
  37. J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, K. Juodkazis, “Difference between surface electrochemistry of ruthenium and RuO2 electrodes,” Transact. Inst. of Metal Finishing 85, 194–201 (2007).
    [CrossRef]
  38. K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, V. Jasulaitienė, “Nickel surface anodic oxidation and electrocatalysis of oxygen evolution,” J. Sol. Stat. Electrochem. 12, 1469–1479 (2008).
    [CrossRef]
  39. K. Juodkazis, J. Juodkazytė, V. Šukienė, A. Grigucevičienė, A. Selskis, “On the charge storage mechanism at RuO2/0.5 M H2SO4 interface,” J. Sol. Stat. Electrochem. 12, 1399–1404 (2008).
    [CrossRef]
  40. K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, V. Jasulaitienė, “Oxygen evolution on mixed ruthenium and nickel oxide electrode,” Chemija 19, 1–6 (2008).
  41. R. Nakamura, Y. Nakato, “In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions,” J. Am. Chem. Soc. 126, 1290–1298 (2004).
    [CrossRef] [PubMed]
  42. R. Nakamura, T. Okamura, N. Ohashi, A. Imanishi, Y. Nakato, “Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidic solutions,” J. Am. Chem. Soc. 127, 12975–12983 (2005).
    [CrossRef] [PubMed]
  43. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables (version 31),” Prog. Photovolt. 16, 61–67 (2008).
    [CrossRef]
  44. W. A. Badawy, “Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells,” J. Alloys and Compounds 464, 347–351 (2008).
    [CrossRef]
  45. N. Dhere, A. H. Jahagirdar, “Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO2 photocatalyst,” Thin Solid Films 480–481, 462–465 (2005).
    [CrossRef]
  46. S. Pillipai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
    [CrossRef]
  47. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
    [CrossRef] [PubMed]
  48. E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mat. 16, 1686– 1708 (2004).
    [CrossRef]
  49. J. Lee, J. Park, J. Kim, D. Lee, K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Organic Electronics 10, 416–420 (2009).
    [CrossRef]
  50. Y. Tian, T. Tatsuma, “Mechanismsand applications of plasmon-induced charge separationat tio2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
    [CrossRef] [PubMed]
  51. C. Chou, R. Yang, C. Yeh, Y. Lin, “Preparation of tio2/nano-metal composite particles and thier applications in dye-sensitized solar cells,” Powder Technol. 194, 95–105 (2009).
    [CrossRef]
  52. T. Hasobe, H. Imahori, S. Fukuzumi, P. V. Kamat, “Nanostructured assembly of porphyrin clusters for light energyconversion,” J. Mater. Chem. 13, 2515–2520 (2003).
    [CrossRef]
  53. H. Imahori, T. Umeyama, “Donor-acceptor nanoarchitecture on semiconducting electrodes forsolar energy conversion,” J. Phys. Chem. C 113, 9029–9039 (2009).
    [CrossRef]
  54. Y. Yokota, K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical characterization of plasmonic metallic nanostructures fabricated by high-resolution lithography,” J. Nanophotonics 1, 011594 (2008).
    [CrossRef]
  55. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mat. 20, 26–29 (2008).
    [CrossRef]
  56. K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical properties of nano-engineered gold blocks,” Opt. Lett. 30, 2158–2160 (2005).
    [CrossRef] [PubMed]
  57. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
    [CrossRef] [PubMed]
  58. V. Mizeikis, E. Kowalska, S. Juodkazis, “Resonant localization, enhancement, and polarization of optical fields in nano-scale interface regions for photo-catalytic applications,” J. Nanosci. Nanotechnol.2010 (in press).
  59. K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, “29.5 percent-efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett. 65, 989–991 (1994).
    [CrossRef]
  60. J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Appl. Phys. Lett. 73, 1991–1993 (1998).
    [CrossRef]
  61. L. Han, A. Islam, N. Koide, R. Yamanaka, “Alternative technology enables large-area solar-cell production,” SPIE Newsroom, doi: (2009).
    [CrossRef]
  62. L. Carrette, K.A. Friedrich, U. Stimming, “Fuel cells: Fundamentals and applications,” Fuel Cells 1, 5–39 (2001).
    [CrossRef]

2010

J. Juodkazytė, B. Šebeka, P. Kalinauskas, K. Juodkazis, “Light energy accumulation using Ti/RuO2 electrode as capacitor,” J. Sol. Stat. Electrochem. 14, 741–746 (2010).
[CrossRef]

2009

J. Lee, J. Park, J. Kim, D. Lee, K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Organic Electronics 10, 416–420 (2009).
[CrossRef]

C. Chou, R. Yang, C. Yeh, Y. Lin, “Preparation of tio2/nano-metal composite particles and thier applications in dye-sensitized solar cells,” Powder Technol. 194, 95–105 (2009).
[CrossRef]

H. Imahori, T. Umeyama, “Donor-acceptor nanoarchitecture on semiconducting electrodes forsolar energy conversion,” J. Phys. Chem. C 113, 9029–9039 (2009).
[CrossRef]

2008

Y. Yokota, K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical characterization of plasmonic metallic nanostructures fabricated by high-resolution lithography,” J. Nanophotonics 1, 011594 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mat. 20, 26–29 (2008).
[CrossRef]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables (version 31),” Prog. Photovolt. 16, 61–67 (2008).
[CrossRef]

W. A. Badawy, “Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells,” J. Alloys and Compounds 464, 347–351 (2008).
[CrossRef]

K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, V. Jasulaitienė, “Nickel surface anodic oxidation and electrocatalysis of oxygen evolution,” J. Sol. Stat. Electrochem. 12, 1469–1479 (2008).
[CrossRef]

K. Juodkazis, J. Juodkazytė, V. Šukienė, A. Grigucevičienė, A. Selskis, “On the charge storage mechanism at RuO2/0.5 M H2SO4 interface,” J. Sol. Stat. Electrochem. 12, 1399–1404 (2008).
[CrossRef]

K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, V. Jasulaitienė, “Oxygen evolution on mixed ruthenium and nickel oxide electrode,” Chemija 19, 1–6 (2008).

A. Fujishima, X. Zhang, D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63, 515–582 (2008).
[CrossRef]

T. W. Murphy, “Home photovoltaic systems for physicists,” Physics Today, 42– 47 (2008).
[CrossRef]

M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181, 46–55 (2008).
[CrossRef]

2007

R. Beranek, H. Kisch, “Surface-modified anodic TiO2 films for visible light photocurrent response,” Electrochem. Comm. 9, 761–766 (2007).
[CrossRef]

T. Tachikawa, M. Fujitsuka, T. Majima, “Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts,” J. Phys. Chem. C 111, 5259– 5275 (2007).
[CrossRef]

G. W. Crabtree, N. S. Lewis, “Solar energy conversion,” Physics Today 60, 37 – 42 (2007).
[CrossRef]

M. Ni, M. K. H. Leung, D. Y. Leung, K. Sumathy, “A review and recent developments in photocatalytic water splitting using TiO2 for hydrogen production,” Renew. and Sustain. Ener. Rev. 11, 401–425 (2007).
[CrossRef]

P. V. Kamat, “Meeting the clean energy demand: Nanostructure architectures for solar energy conversion,” J. Phys. Chem. C 111, 2834–2860 (2007).
[CrossRef]

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. I. functional properties,” Int. J. Hydr. Energ. 32, 2609–2629 (2007).
[CrossRef]

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. III. kinetic effects,” Int. J. Hydr. Energ. 32, 2644–2650 (2007).
[CrossRef]

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. IV. collective and local factors in photolysis of water,” Int. J. Hydr. Energ. 32, 2651–2659 (2007).
[CrossRef]

J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, K. Juodkazis, “Difference between surface electrochemistry of ruthenium and RuO2 electrodes,” Transact. Inst. of Metal Finishing 85, 194–201 (2007).
[CrossRef]

S. Pillipai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

2006

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[CrossRef] [PubMed]

K. Juodkazis, J. Juodkazytė, T. Juodienė, V. Šukienė, I. Savickaja, “Alternative view of anodic surface oxidation of noble metals,” Electrochimica Acta 51, 6159–6164 (2006).
[CrossRef]

U. S. Avachat, A. H. Jahagirdar, N. G. Dhere, “Multiple bandgap combination of thin film photovoltaic cells and a photoanode for efficient hydrogen and oxygen generation by water splitting,” Solar Energ. Mat. and Solar Cells 90, 2464–2470 (2006).
[CrossRef]

G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, “A review on highly-ordered TiO2 nanotube-arrays: fabrication, material properties, and solar energy applications,” Solar Ener. Mat. and Solar Cells 90, 2011–2075 (2006).
[CrossRef]

2005

V. M. Aroutiounian, V. M. Arakelyan, G. E. Shahnazaryan, “Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting,” Solar Energy 78, 581–592 (2005).
[CrossRef]

Y. Tian, T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef] [PubMed]

E. L. Miller, D. Paluselli, B. Marsen, R. E. Rocheleau, “Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes,” Solar Energ. Mat. and Solar Cells 88(2), 131–144 (2005).
[CrossRef]

T. Lana-Villarreal, R. Gomez, “Interfacial electron transfer at TiO2 nanostructured electrodes modified with capped gold nanoparticles: The photoelectrochemistry of water oxidation,” Electrochem. Comm. 7, 1218–1224 (2005).
[CrossRef]

R. Nakamura, T. Okamura, N. Ohashi, A. Imanishi, Y. Nakato, “Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidic solutions,” J. Am. Chem. Soc. 127, 12975–12983 (2005).
[CrossRef] [PubMed]

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical properties of nano-engineered gold blocks,” Opt. Lett. 30, 2158–2160 (2005).
[CrossRef] [PubMed]

N. Dhere, A. H. Jahagirdar, “Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO2 photocatalyst,” Thin Solid Films 480–481, 462–465 (2005).
[CrossRef]

Y. Tian, T. Tatsuma, “Mechanismsand applications of plasmon-induced charge separationat tio2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef] [PubMed]

2004

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mat. 16, 1686– 1708 (2004).
[CrossRef]

R. Nakamura, Y. Nakato, “In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions,” J. Am. Chem. Soc. 126, 1290–1298 (2004).
[CrossRef] [PubMed]

2003

K. Juodkazis, J. Juodkazytė, Y. Tabuchi, S. Juodkazis, S. Matsuo, H. Misawa, “Deposition of platinum and irridium on Ti surface using femtosecond laser and electrochemical activation,” Lith. J. Phys. 43, 209–216 (2003).

T. Hasobe, H. Imahori, S. Fukuzumi, P. V. Kamat, “Nanostructured assembly of porphyrin clusters for light energyconversion,” J. Mater. Chem. 13, 2515–2520 (2003).
[CrossRef]

2001

L. Carrette, K.A. Friedrich, U. Stimming, “Fuel cells: Fundamentals and applications,” Fuel Cells 1, 5–39 (2001).
[CrossRef]

S. Juodkazis, A. Yamaguchi, H. Ishii, S. Matsuo, H. Takagi, H. Misawa, “Photo-electrochemical deposition of platinum on TiO2 with resolution of tens-of-nm by using a mask elaborated with electron-beam lithography,” Jpn. J. Appl. Phys. 40, 4246–4251 (2001).
[CrossRef]

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414, 625–627 (2001).
[CrossRef] [PubMed]

M. Grätzel, “Photoelectrochemical cells,” Nature 414, 338– 344 (2001).
[CrossRef] [PubMed]

1999

A. Survila, P. Kalinauskas, I. Valsiūnas, “Photoelektrochemical properties of surface layers formed by anodic oxidation of titanium,” Chemija 10, 117–121 (1999).

1998

J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

1995

A. L. Linsebigler, G. Lu, J.T. Yates, “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results,” Chem. Rev. 95, 735–758 (1995).
[CrossRef]

1994

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, “29.5 percent-efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett. 65, 989–991 (1994).
[CrossRef]

1986

C. Gutierrez, P. Salvador, “Mechanisms of competitive photoelectrochemical oxidation of I and H2O at n-TiO2 electrodes: A kinetic approach,” J. Electrochem. Soc. 133, 924–929 (1986).
[CrossRef]

1985

P. Salvador, “Kinetic approach to the photocurrent transients in water photoelectrolysis at n-titanium dioxide electrodes. 1. analysis of the ratio of the instantaneous to steady-state photocurrent,” J. Phys. Chem. C 89, 3683–3869 (1985).

1984

B. Parkinson, “On the efficiency and stability of photoelectrochemical. devices,” Acc. Chem. Res. 17, 431–437 (1984).
[CrossRef]

P. Salvador, C. Gutierrez, “The nature of surface states involved in the photo- and electroluminescence spectra of n-titanium dioxide electrodes,” J. Phys. Chem. C 84, 3696–3698 (1984).

1972

A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238, 37–38 (1972).
[CrossRef] [PubMed]

Arakawa, H.

Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414, 625–627 (2001).
[CrossRef] [PubMed]

Arakelyan, V. M.

V. M. Aroutiounian, V. M. Arakelyan, G. E. Shahnazaryan, “Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting,” Solar Energy 78, 581–592 (2005).
[CrossRef]

Aroutiounian, V. M.

V. M. Aroutiounian, V. M. Arakelyan, G. E. Shahnazaryan, “Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting,” Solar Energy 78, 581–592 (2005).
[CrossRef]

Avachat, U. S.

U. S. Avachat, A. H. Jahagirdar, N. G. Dhere, “Multiple bandgap combination of thin film photovoltaic cells and a photoanode for efficient hydrogen and oxygen generation by water splitting,” Solar Energ. Mat. and Solar Cells 90, 2464–2470 (2006).
[CrossRef]

Badawy, W. A.

W. A. Badawy, “Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells,” J. Alloys and Compounds 464, 347–351 (2008).
[CrossRef]

Bak, T.

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. IV. collective and local factors in photolysis of water,” Int. J. Hydr. Energ. 32, 2651–2659 (2007).
[CrossRef]

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. I. functional properties,” Int. J. Hydr. Energ. 32, 2609–2629 (2007).
[CrossRef]

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. III. kinetic effects,” Int. J. Hydr. Energ. 32, 2644–2650 (2007).
[CrossRef]

Beranek, R.

R. Beranek, H. Kisch, “Surface-modified anodic TiO2 films for visible light photocurrent response,” Electrochem. Comm. 9, 761–766 (2007).
[CrossRef]

Bertness, K. A.

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, “29.5 percent-efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett. 65, 989–991 (1994).
[CrossRef]

Bignozzi, C. A.

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Carrette, L.

L. Carrette, K.A. Friedrich, U. Stimming, “Fuel cells: Fundamentals and applications,” Fuel Cells 1, 5–39 (2001).
[CrossRef]

Catchpole, K. R.

S. Pillipai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Cevey, L.

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Cho, K.

J. Lee, J. Park, J. Kim, D. Lee, K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Organic Electronics 10, 416–420 (2009).
[CrossRef]

Chou, C.

C. Chou, R. Yang, C. Yeh, Y. Lin, “Preparation of tio2/nano-metal composite particles and thier applications in dye-sensitized solar cells,” Powder Technol. 194, 95–105 (2009).
[CrossRef]

Comte, P.

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Costa, E.

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Crabtree, G. W.

G. W. Crabtree, N. S. Lewis, “Solar energy conversion,” Physics Today 60, 37 – 42 (2007).
[CrossRef]

Deacon, G. B.

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Dhere, N.

N. Dhere, A. H. Jahagirdar, “Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO2 photocatalyst,” Thin Solid Films 480–481, 462–465 (2005).
[CrossRef]

Dhere, N. G.

U. S. Avachat, A. H. Jahagirdar, N. G. Dhere, “Multiple bandgap combination of thin film photovoltaic cells and a photoanode for efficient hydrogen and oxygen generation by water splitting,” Solar Energ. Mat. and Solar Cells 90, 2464–2470 (2006).
[CrossRef]

Dobos, D.

D. Dobos, Electrochemical Data (Mir, Moscow, 1980).

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables (version 31),” Prog. Photovolt. 16, 61–67 (2008).
[CrossRef]

Fendler, J. H.

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mat. 16, 1686– 1708 (2004).
[CrossRef]

Ferrazza, F.

J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

Friedman, D. J.

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, “29.5 percent-efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett. 65, 989–991 (1994).
[CrossRef]

Friedrich, K.A.

L. Carrette, K.A. Friedrich, U. Stimming, “Fuel cells: Fundamentals and applications,” Fuel Cells 1, 5–39 (2001).
[CrossRef]

Fujishima, A.

A. Fujishima, X. Zhang, D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63, 515–582 (2008).
[CrossRef]

A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238, 37–38 (1972).
[CrossRef] [PubMed]

Fujitsuka, M.

T. Tachikawa, M. Fujitsuka, T. Majima, “Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts,” J. Phys. Chem. C 111, 5259– 5275 (2007).
[CrossRef]

Fukuzumi, S.

T. Hasobe, H. Imahori, S. Fukuzumi, P. V. Kamat, “Nanostructured assembly of porphyrin clusters for light energyconversion,” J. Mater. Chem. 13, 2515–2520 (2003).
[CrossRef]

Gomez, R.

T. Lana-Villarreal, R. Gomez, “Interfacial electron transfer at TiO2 nanostructured electrodes modified with capped gold nanoparticles: The photoelectrochemistry of water oxidation,” Electrochem. Comm. 7, 1218–1224 (2005).
[CrossRef]

Grätzel, M.

M. Grätzel, “Photoelectrochemical cells,” Nature 414, 338– 344 (2001).
[CrossRef] [PubMed]

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables (version 31),” Prog. Photovolt. 16, 61–67 (2008).
[CrossRef]

S. Pillipai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

Griguceviciene, A.

K. Juodkazis, J. Juodkazytė, V. Šukienė, A. Grigucevičienė, A. Selskis, “On the charge storage mechanism at RuO2/0.5 M H2SO4 interface,” J. Sol. Stat. Electrochem. 12, 1399–1404 (2008).
[CrossRef]

Grimes, C. A.

G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, “A review on highly-ordered TiO2 nanotube-arrays: fabrication, material properties, and solar energy applications,” Solar Ener. Mat. and Solar Cells 90, 2011–2075 (2006).
[CrossRef]

Gutierrez, C.

C. Gutierrez, P. Salvador, “Mechanisms of competitive photoelectrochemical oxidation of I and H2O at n-TiO2 electrodes: A kinetic approach,” J. Electrochem. Soc. 133, 924–929 (1986).
[CrossRef]

P. Salvador, C. Gutierrez, “The nature of surface states involved in the photo- and electroluminescence spectra of n-titanium dioxide electrodes,” J. Phys. Chem. C 84, 3696–3698 (1984).

Han, L.

L. Han, A. Islam, N. Koide, R. Yamanaka, “Alternative technology enables large-area solar-cell production,” SPIE Newsroom, doi: (2009).
[CrossRef]

Hasobe, T.

T. Hasobe, H. Imahori, S. Fukuzumi, P. V. Kamat, “Nanostructured assembly of porphyrin clusters for light energyconversion,” J. Mater. Chem. 13, 2515–2520 (2003).
[CrossRef]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables (version 31),” Prog. Photovolt. 16, 61–67 (2008).
[CrossRef]

Honda, K.

A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238, 37–38 (1972).
[CrossRef] [PubMed]

Humpry-Baker, R.

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Hutter, E.

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mat. 16, 1686– 1708 (2004).
[CrossRef]

Imahori, H.

H. Imahori, T. Umeyama, “Donor-acceptor nanoarchitecture on semiconducting electrodes forsolar energy conversion,” J. Phys. Chem. C 113, 9029–9039 (2009).
[CrossRef]

T. Hasobe, H. Imahori, S. Fukuzumi, P. V. Kamat, “Nanostructured assembly of porphyrin clusters for light energyconversion,” J. Mater. Chem. 13, 2515–2520 (2003).
[CrossRef]

Imanishi, A.

R. Nakamura, T. Okamura, N. Ohashi, A. Imanishi, Y. Nakato, “Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidic solutions,” J. Am. Chem. Soc. 127, 12975–12983 (2005).
[CrossRef] [PubMed]

Ishii, H.

S. Juodkazis, A. Yamaguchi, H. Ishii, S. Matsuo, H. Takagi, H. Misawa, “Photo-electrochemical deposition of platinum on TiO2 with resolution of tens-of-nm by using a mask elaborated with electron-beam lithography,” Jpn. J. Appl. Phys. 40, 4246–4251 (2001).
[CrossRef]

Islam, A.

L. Han, A. Islam, N. Koide, R. Yamanaka, “Alternative technology enables large-area solar-cell production,” SPIE Newsroom, doi: (2009).
[CrossRef]

Jahagirdar, A. H.

U. S. Avachat, A. H. Jahagirdar, N. G. Dhere, “Multiple bandgap combination of thin film photovoltaic cells and a photoanode for efficient hydrogen and oxygen generation by water splitting,” Solar Energ. Mat. and Solar Cells 90, 2464–2470 (2006).
[CrossRef]

N. Dhere, A. H. Jahagirdar, “Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO2 photocatalyst,” Thin Solid Films 480–481, 462–465 (2005).
[CrossRef]

Jasulaitiene, V.

K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, V. Jasulaitienė, “Nickel surface anodic oxidation and electrocatalysis of oxygen evolution,” J. Sol. Stat. Electrochem. 12, 1469–1479 (2008).
[CrossRef]

K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, V. Jasulaitienė, “Oxygen evolution on mixed ruthenium and nickel oxide electrode,” Chemija 19, 1–6 (2008).

Juodiene, T.

K. Juodkazis, J. Juodkazytė, T. Juodienė, V. Šukienė, I. Savickaja, “Alternative view of anodic surface oxidation of noble metals,” Electrochimica Acta 51, 6159–6164 (2006).
[CrossRef]

Juodkazis, K.

J. Juodkazytė, B. Šebeka, P. Kalinauskas, K. Juodkazis, “Light energy accumulation using Ti/RuO2 electrode as capacitor,” J. Sol. Stat. Electrochem. 14, 741–746 (2010).
[CrossRef]

K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, V. Jasulaitienė, “Oxygen evolution on mixed ruthenium and nickel oxide electrode,” Chemija 19, 1–6 (2008).

K. Juodkazis, J. Juodkazytė, V. Šukienė, A. Grigucevičienė, A. Selskis, “On the charge storage mechanism at RuO2/0.5 M H2SO4 interface,” J. Sol. Stat. Electrochem. 12, 1399–1404 (2008).
[CrossRef]

K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, V. Jasulaitienė, “Nickel surface anodic oxidation and electrocatalysis of oxygen evolution,” J. Sol. Stat. Electrochem. 12, 1469–1479 (2008).
[CrossRef]

J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, K. Juodkazis, “Difference between surface electrochemistry of ruthenium and RuO2 electrodes,” Transact. Inst. of Metal Finishing 85, 194–201 (2007).
[CrossRef]

K. Juodkazis, J. Juodkazytė, T. Juodienė, V. Šukienė, I. Savickaja, “Alternative view of anodic surface oxidation of noble metals,” Electrochimica Acta 51, 6159–6164 (2006).
[CrossRef]

K. Juodkazis, J. Juodkazytė, Y. Tabuchi, S. Juodkazis, S. Matsuo, H. Misawa, “Deposition of platinum and irridium on Ti surface using femtosecond laser and electrochemical activation,” Lith. J. Phys. 43, 209–216 (2003).

Juodkazis, S.

Y. Yokota, K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical characterization of plasmonic metallic nanostructures fabricated by high-resolution lithography,” J. Nanophotonics 1, 011594 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mat. 20, 26–29 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[CrossRef] [PubMed]

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical properties of nano-engineered gold blocks,” Opt. Lett. 30, 2158–2160 (2005).
[CrossRef] [PubMed]

K. Juodkazis, J. Juodkazytė, Y. Tabuchi, S. Juodkazis, S. Matsuo, H. Misawa, “Deposition of platinum and irridium on Ti surface using femtosecond laser and electrochemical activation,” Lith. J. Phys. 43, 209–216 (2003).

S. Juodkazis, A. Yamaguchi, H. Ishii, S. Matsuo, H. Takagi, H. Misawa, “Photo-electrochemical deposition of platinum on TiO2 with resolution of tens-of-nm by using a mask elaborated with electron-beam lithography,” Jpn. J. Appl. Phys. 40, 4246–4251 (2001).
[CrossRef]

V. Mizeikis, E. Kowalska, S. Juodkazis, “Resonant localization, enhancement, and polarization of optical fields in nano-scale interface regions for photo-catalytic applications,” J. Nanosci. Nanotechnol.2010 (in press).

Juodkazyte, J.

J. Juodkazytė, B. Šebeka, P. Kalinauskas, K. Juodkazis, “Light energy accumulation using Ti/RuO2 electrode as capacitor,” J. Sol. Stat. Electrochem. 14, 741–746 (2010).
[CrossRef]

K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, V. Jasulaitienė, “Oxygen evolution on mixed ruthenium and nickel oxide electrode,” Chemija 19, 1–6 (2008).

K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, V. Jasulaitienė, “Nickel surface anodic oxidation and electrocatalysis of oxygen evolution,” J. Sol. Stat. Electrochem. 12, 1469–1479 (2008).
[CrossRef]

K. Juodkazis, J. Juodkazytė, V. Šukienė, A. Grigucevičienė, A. Selskis, “On the charge storage mechanism at RuO2/0.5 M H2SO4 interface,” J. Sol. Stat. Electrochem. 12, 1399–1404 (2008).
[CrossRef]

J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, K. Juodkazis, “Difference between surface electrochemistry of ruthenium and RuO2 electrodes,” Transact. Inst. of Metal Finishing 85, 194–201 (2007).
[CrossRef]

K. Juodkazis, J. Juodkazytė, T. Juodienė, V. Šukienė, I. Savickaja, “Alternative view of anodic surface oxidation of noble metals,” Electrochimica Acta 51, 6159–6164 (2006).
[CrossRef]

K. Juodkazis, J. Juodkazytė, Y. Tabuchi, S. Juodkazis, S. Matsuo, H. Misawa, “Deposition of platinum and irridium on Ti surface using femtosecond laser and electrochemical activation,” Lith. J. Phys. 43, 209–216 (2003).

Kalinauskas, P.

J. Juodkazytė, B. Šebeka, P. Kalinauskas, K. Juodkazis, “Light energy accumulation using Ti/RuO2 electrode as capacitor,” J. Sol. Stat. Electrochem. 14, 741–746 (2010).
[CrossRef]

A. Survila, P. Kalinauskas, I. Valsiūnas, “Photoelektrochemical properties of surface layers formed by anodic oxidation of titanium,” Chemija 10, 117–121 (1999).

Kamat, P. V.

P. V. Kamat, “Meeting the clean energy demand: Nanostructure architectures for solar energy conversion,” J. Phys. Chem. C 111, 2834–2860 (2007).
[CrossRef]

T. Hasobe, H. Imahori, S. Fukuzumi, P. V. Kamat, “Nanostructured assembly of porphyrin clusters for light energyconversion,” J. Mater. Chem. 13, 2515–2520 (2003).
[CrossRef]

Kibbler, A. E.

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, “29.5 percent-efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett. 65, 989–991 (1994).
[CrossRef]

Kim, J.

J. Lee, J. Park, J. Kim, D. Lee, K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Organic Electronics 10, 416–420 (2009).
[CrossRef]

Kisch, H.

R. Beranek, H. Kisch, “Surface-modified anodic TiO2 films for visible light photocurrent response,” Electrochem. Comm. 9, 761–766 (2007).
[CrossRef]

Koide, N.

L. Han, A. Islam, N. Koide, R. Yamanaka, “Alternative technology enables large-area solar-cell production,” SPIE Newsroom, doi: (2009).
[CrossRef]

Kowalska, E.

V. Mizeikis, E. Kowalska, S. Juodkazis, “Resonant localization, enhancement, and polarization of optical fields in nano-scale interface regions for photo-catalytic applications,” J. Nanosci. Nanotechnol.2010 (in press).

Kurtz, S. R.

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, “29.5 percent-efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett. 65, 989–991 (1994).
[CrossRef]

Lana-Villarreal, T.

T. Lana-Villarreal, R. Gomez, “Interfacial electron transfer at TiO2 nanostructured electrodes modified with capped gold nanoparticles: The photoelectrochemistry of water oxidation,” Electrochem. Comm. 7, 1218–1224 (2005).
[CrossRef]

Lee, D.

J. Lee, J. Park, J. Kim, D. Lee, K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Organic Electronics 10, 416–420 (2009).
[CrossRef]

Lee, J.

J. Lee, J. Park, J. Kim, D. Lee, K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Organic Electronics 10, 416–420 (2009).
[CrossRef]

Leung, D. Y.

M. Ni, M. K. H. Leung, D. Y. Leung, K. Sumathy, “A review and recent developments in photocatalytic water splitting using TiO2 for hydrogen production,” Renew. and Sustain. Ener. Rev. 11, 401–425 (2007).
[CrossRef]

Leung, M. K. H.

M. Ni, M. K. H. Leung, D. Y. Leung, K. Sumathy, “A review and recent developments in photocatalytic water splitting using TiO2 for hydrogen production,” Renew. and Sustain. Ener. Rev. 11, 401–425 (2007).
[CrossRef]

Lewis, N. S.

G. W. Crabtree, N. S. Lewis, “Solar energy conversion,” Physics Today 60, 37 – 42 (2007).
[CrossRef]

Lin, Y.

C. Chou, R. Yang, C. Yeh, Y. Lin, “Preparation of tio2/nano-metal composite particles and thier applications in dye-sensitized solar cells,” Powder Technol. 194, 95–105 (2009).
[CrossRef]

Linsebigler, A. L.

A. L. Linsebigler, G. Lu, J.T. Yates, “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results,” Chem. Rev. 95, 735–758 (1995).
[CrossRef]

Liska, P.

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Lu, G.

A. L. Linsebigler, G. Lu, J.T. Yates, “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results,” Chem. Rev. 95, 735–758 (1995).
[CrossRef]

Maier, S. A.

Majima, T.

T. Tachikawa, M. Fujitsuka, T. Majima, “Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts,” J. Phys. Chem. C 111, 5259– 5275 (2007).
[CrossRef]

Marsen, B.

E. L. Miller, D. Paluselli, B. Marsen, R. E. Rocheleau, “Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes,” Solar Energ. Mat. and Solar Cells 88(2), 131–144 (2005).
[CrossRef]

Matsuo, S.

K. Juodkazis, J. Juodkazytė, Y. Tabuchi, S. Juodkazis, S. Matsuo, H. Misawa, “Deposition of platinum and irridium on Ti surface using femtosecond laser and electrochemical activation,” Lith. J. Phys. 43, 209–216 (2003).

S. Juodkazis, A. Yamaguchi, H. Ishii, S. Matsuo, H. Takagi, H. Misawa, “Photo-electrochemical deposition of platinum on TiO2 with resolution of tens-of-nm by using a mask elaborated with electron-beam lithography,” Jpn. J. Appl. Phys. 40, 4246–4251 (2001).
[CrossRef]

Miller, E. L.

E. L. Miller, D. Paluselli, B. Marsen, R. E. Rocheleau, “Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes,” Solar Energ. Mat. and Solar Cells 88(2), 131–144 (2005).
[CrossRef]

Misawa, H.

Y. Yokota, K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical characterization of plasmonic metallic nanostructures fabricated by high-resolution lithography,” J. Nanophotonics 1, 011594 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mat. 20, 26–29 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[CrossRef] [PubMed]

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical properties of nano-engineered gold blocks,” Opt. Lett. 30, 2158–2160 (2005).
[CrossRef] [PubMed]

K. Juodkazis, J. Juodkazytė, Y. Tabuchi, S. Juodkazis, S. Matsuo, H. Misawa, “Deposition of platinum and irridium on Ti surface using femtosecond laser and electrochemical activation,” Lith. J. Phys. 43, 209–216 (2003).

S. Juodkazis, A. Yamaguchi, H. Ishii, S. Matsuo, H. Takagi, H. Misawa, “Photo-electrochemical deposition of platinum on TiO2 with resolution of tens-of-nm by using a mask elaborated with electron-beam lithography,” Jpn. J. Appl. Phys. 40, 4246–4251 (2001).
[CrossRef]

Mizeikis, V.

Y. Yokota, K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical characterization of plasmonic metallic nanostructures fabricated by high-resolution lithography,” J. Nanophotonics 1, 011594 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mat. 20, 26–29 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[CrossRef] [PubMed]

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical properties of nano-engineered gold blocks,” Opt. Lett. 30, 2158–2160 (2005).
[CrossRef] [PubMed]

V. Mizeikis, E. Kowalska, S. Juodkazis, “Resonant localization, enhancement, and polarization of optical fields in nano-scale interface regions for photo-catalytic applications,” J. Nanosci. Nanotechnol.2010 (in press).

Mor, G. K.

G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, “A review on highly-ordered TiO2 nanotube-arrays: fabrication, material properties, and solar energy applications,” Solar Ener. Mat. and Solar Cells 90, 2011–2075 (2006).
[CrossRef]

Murphy, T. W.

T. W. Murphy, “Home photovoltaic systems for physicists,” Physics Today, 42– 47 (2008).
[CrossRef]

Nakamura, R.

R. Nakamura, T. Okamura, N. Ohashi, A. Imanishi, Y. Nakato, “Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidic solutions,” J. Am. Chem. Soc. 127, 12975–12983 (2005).
[CrossRef] [PubMed]

R. Nakamura, Y. Nakato, “In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions,” J. Am. Chem. Soc. 126, 1290–1298 (2004).
[CrossRef] [PubMed]

Nakato, Y.

R. Nakamura, T. Okamura, N. Ohashi, A. Imanishi, Y. Nakato, “Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidic solutions,” J. Am. Chem. Soc. 127, 12975–12983 (2005).
[CrossRef] [PubMed]

R. Nakamura, Y. Nakato, “In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions,” J. Am. Chem. Soc. 126, 1290–1298 (2004).
[CrossRef] [PubMed]

Nazeeruddin, M. K.

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Ni, M.

M. Ni, M. K. H. Leung, D. Y. Leung, K. Sumathy, “A review and recent developments in photocatalytic water splitting using TiO2 for hydrogen production,” Renew. and Sustain. Ener. Rev. 11, 401–425 (2007).
[CrossRef]

Nowotny, J.

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. I. functional properties,” Int. J. Hydr. Energ. 32, 2609–2629 (2007).
[CrossRef]

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. III. kinetic effects,” Int. J. Hydr. Energ. 32, 2644–2650 (2007).
[CrossRef]

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. IV. collective and local factors in photolysis of water,” Int. J. Hydr. Energ. 32, 2651–2659 (2007).
[CrossRef]

Nowotny, M. K.

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. III. kinetic effects,” Int. J. Hydr. Energ. 32, 2644–2650 (2007).
[CrossRef]

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. I. functional properties,” Int. J. Hydr. Energ. 32, 2609–2629 (2007).
[CrossRef]

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. IV. collective and local factors in photolysis of water,” Int. J. Hydr. Energ. 32, 2651–2659 (2007).
[CrossRef]

Ohashi, N.

R. Nakamura, T. Okamura, N. Ohashi, A. Imanishi, Y. Nakato, “Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidic solutions,” J. Am. Chem. Soc. 127, 12975–12983 (2005).
[CrossRef] [PubMed]

Okamura, T.

R. Nakamura, T. Okamura, N. Ohashi, A. Imanishi, Y. Nakato, “Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidic solutions,” J. Am. Chem. Soc. 127, 12975–12983 (2005).
[CrossRef] [PubMed]

Paluselli, D.

E. L. Miller, D. Paluselli, B. Marsen, R. E. Rocheleau, “Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes,” Solar Energ. Mat. and Solar Cells 88(2), 131–144 (2005).
[CrossRef]

Park, J.

J. Lee, J. Park, J. Kim, D. Lee, K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Organic Electronics 10, 416–420 (2009).
[CrossRef]

Parkinson, B.

B. Parkinson, “On the efficiency and stability of photoelectrochemical. devices,” Acc. Chem. Res. 17, 431–437 (1984).
[CrossRef]

Paulose, M.

G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, “A review on highly-ordered TiO2 nanotube-arrays: fabrication, material properties, and solar energy applications,” Solar Ener. Mat. and Solar Cells 90, 2011–2075 (2006).
[CrossRef]

Pechy, P.

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Pillipai, S.

S. Pillipai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Pourbaix, M.

M. Pourbaix, Atlas d’équilibres électrochimiques (Gauthier-Villars, Paris, 1963).
[PubMed]

Radecka, M.

M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181, 46–55 (2008).
[CrossRef]

Rekas, M.

M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181, 46–55 (2008).
[CrossRef]

Renouard, T.

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Rocheleau, R. E.

E. L. Miller, D. Paluselli, B. Marsen, R. E. Rocheleau, “Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes,” Solar Energ. Mat. and Solar Cells 88(2), 131–144 (2005).
[CrossRef]

Salvador, P.

C. Gutierrez, P. Salvador, “Mechanisms of competitive photoelectrochemical oxidation of I and H2O at n-TiO2 electrodes: A kinetic approach,” J. Electrochem. Soc. 133, 924–929 (1986).
[CrossRef]

P. Salvador, “Kinetic approach to the photocurrent transients in water photoelectrolysis at n-titanium dioxide electrodes. 1. analysis of the ratio of the instantaneous to steady-state photocurrent,” J. Phys. Chem. C 89, 3683–3869 (1985).

P. Salvador, C. Gutierrez, “The nature of surface states involved in the photo- and electroluminescence spectra of n-titanium dioxide electrodes,” J. Phys. Chem. C 84, 3696–3698 (1984).

Sasaki, K.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mat. 20, 26–29 (2008).
[CrossRef]

Y. Yokota, K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical characterization of plasmonic metallic nanostructures fabricated by high-resolution lithography,” J. Nanophotonics 1, 011594 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[CrossRef] [PubMed]

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical properties of nano-engineered gold blocks,” Opt. Lett. 30, 2158–2160 (2005).
[CrossRef] [PubMed]

Sato, N.

N. Sato, Electrochemistry at metal and semiconductor electrodes (Elsevier Science, Amsterdam, 1998).

Savickaja, I.

K. Juodkazis, J. Juodkazytė, T. Juodienė, V. Šukienė, I. Savickaja, “Alternative view of anodic surface oxidation of noble metals,” Electrochimica Acta 51, 6159–6164 (2006).
[CrossRef]

Sayama, K.

Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414, 625–627 (2001).
[CrossRef] [PubMed]

Šebeka, B.

J. Juodkazytė, B. Šebeka, P. Kalinauskas, K. Juodkazis, “Light energy accumulation using Ti/RuO2 electrode as capacitor,” J. Sol. Stat. Electrochem. 14, 741–746 (2010).
[CrossRef]

K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, V. Jasulaitienė, “Oxygen evolution on mixed ruthenium and nickel oxide electrode,” Chemija 19, 1–6 (2008).

J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, K. Juodkazis, “Difference between surface electrochemistry of ruthenium and RuO2 electrodes,” Transact. Inst. of Metal Finishing 85, 194–201 (2007).
[CrossRef]

Selskis, A.

K. Juodkazis, J. Juodkazytė, V. Šukienė, A. Grigucevičienė, A. Selskis, “On the charge storage mechanism at RuO2/0.5 M H2SO4 interface,” J. Sol. Stat. Electrochem. 12, 1399–1404 (2008).
[CrossRef]

Shahnazaryan, G. E.

V. M. Aroutiounian, V. M. Arakelyan, G. E. Shahnazaryan, “Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting,” Solar Energy 78, 581–592 (2005).
[CrossRef]

Shankar, K.

G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, “A review on highly-ordered TiO2 nanotube-arrays: fabrication, material properties, and solar energy applications,” Solar Ener. Mat. and Solar Cells 90, 2011–2075 (2006).
[CrossRef]

Sheppard, L.

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. IV. collective and local factors in photolysis of water,” Int. J. Hydr. Energ. 32, 2651–2659 (2007).
[CrossRef]

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. I. functional properties,” Int. J. Hydr. Energ. 32, 2609–2629 (2007).
[CrossRef]

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. III. kinetic effects,” Int. J. Hydr. Energ. 32, 2644–2650 (2007).
[CrossRef]

Shklover, V.

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Spiccia, L.

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Stimming, U.

L. Carrette, K.A. Friedrich, U. Stimming, “Fuel cells: Fundamentals and applications,” Fuel Cells 1, 5–39 (2001).
[CrossRef]

Šukiene, V.

K. Juodkazis, J. Juodkazytė, V. Šukienė, A. Grigucevičienė, A. Selskis, “On the charge storage mechanism at RuO2/0.5 M H2SO4 interface,” J. Sol. Stat. Electrochem. 12, 1399–1404 (2008).
[CrossRef]

K. Juodkazis, J. Juodkazytė, T. Juodienė, V. Šukienė, I. Savickaja, “Alternative view of anodic surface oxidation of noble metals,” Electrochimica Acta 51, 6159–6164 (2006).
[CrossRef]

Sumathy, K.

M. Ni, M. K. H. Leung, D. Y. Leung, K. Sumathy, “A review and recent developments in photocatalytic water splitting using TiO2 for hydrogen production,” Renew. and Sustain. Ener. Rev. 11, 401–425 (2007).
[CrossRef]

Survila, A.

A. Survila, P. Kalinauskas, I. Valsiūnas, “Photoelektrochemical properties of surface layers formed by anodic oxidation of titanium,” Chemija 10, 117–121 (1999).

Tabuchi, Y.

K. Juodkazis, J. Juodkazytė, Y. Tabuchi, S. Juodkazis, S. Matsuo, H. Misawa, “Deposition of platinum and irridium on Ti surface using femtosecond laser and electrochemical activation,” Lith. J. Phys. 43, 209–216 (2003).

Tachikawa, T.

T. Tachikawa, M. Fujitsuka, T. Majima, “Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts,” J. Phys. Chem. C 111, 5259– 5275 (2007).
[CrossRef]

Takagi, H.

S. Juodkazis, A. Yamaguchi, H. Ishii, S. Matsuo, H. Takagi, H. Misawa, “Photo-electrochemical deposition of platinum on TiO2 with resolution of tens-of-nm by using a mask elaborated with electron-beam lithography,” Jpn. J. Appl. Phys. 40, 4246–4251 (2001).
[CrossRef]

Tatsuma, T.

Y. Tian, T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef] [PubMed]

Y. Tian, T. Tatsuma, “Mechanismsand applications of plasmon-induced charge separationat tio2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef] [PubMed]

Tian, Y.

Y. Tian, T. Tatsuma, “Mechanismsand applications of plasmon-induced charge separationat tio2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef] [PubMed]

Y. Tian, T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef] [PubMed]

Trenczek-Zajac, A.

M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181, 46–55 (2008).
[CrossRef]

Trupke, T.

S. Pillipai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Tryk, D. A.

A. Fujishima, X. Zhang, D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63, 515–582 (2008).
[CrossRef]

Ueno, K.

Y. Yokota, K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical characterization of plasmonic metallic nanostructures fabricated by high-resolution lithography,” J. Nanophotonics 1, 011594 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mat. 20, 26–29 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[CrossRef] [PubMed]

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical properties of nano-engineered gold blocks,” Opt. Lett. 30, 2158–2160 (2005).
[CrossRef] [PubMed]

Umeyama, T.

H. Imahori, T. Umeyama, “Donor-acceptor nanoarchitecture on semiconducting electrodes forsolar energy conversion,” J. Phys. Chem. C 113, 9029–9039 (2009).
[CrossRef]

Valsiunas, I.

A. Survila, P. Kalinauskas, I. Valsiūnas, “Photoelektrochemical properties of surface layers formed by anodic oxidation of titanium,” Chemija 10, 117–121 (1999).

Varghese, O. K.

G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, “A review on highly-ordered TiO2 nanotube-arrays: fabrication, material properties, and solar energy applications,” Solar Ener. Mat. and Solar Cells 90, 2011–2075 (2006).
[CrossRef]

Vetter, K. J.

K. J. Vetter, Elektrochemische kinetik (Springer-Verlag, Berlin-Gottingen, 1961).

Vilkauskaite, R.

K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, V. Jasulaitienė, “Nickel surface anodic oxidation and electrocatalysis of oxygen evolution,” J. Sol. Stat. Electrochem. 12, 1469–1479 (2008).
[CrossRef]

K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, V. Jasulaitienė, “Oxygen evolution on mixed ruthenium and nickel oxide electrode,” Chemija 19, 1–6 (2008).

J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, K. Juodkazis, “Difference between surface electrochemistry of ruthenium and RuO2 electrodes,” Transact. Inst. of Metal Finishing 85, 194–201 (2007).
[CrossRef]

Wang, A. H.

J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables (version 31),” Prog. Photovolt. 16, 61–67 (2008).
[CrossRef]

Yamaguchi, A.

S. Juodkazis, A. Yamaguchi, H. Ishii, S. Matsuo, H. Takagi, H. Misawa, “Photo-electrochemical deposition of platinum on TiO2 with resolution of tens-of-nm by using a mask elaborated with electron-beam lithography,” Jpn. J. Appl. Phys. 40, 4246–4251 (2001).
[CrossRef]

Yamanaka, R.

L. Han, A. Islam, N. Koide, R. Yamanaka, “Alternative technology enables large-area solar-cell production,” SPIE Newsroom, doi: (2009).
[CrossRef]

Yang, R.

C. Chou, R. Yang, C. Yeh, Y. Lin, “Preparation of tio2/nano-metal composite particles and thier applications in dye-sensitized solar cells,” Powder Technol. 194, 95–105 (2009).
[CrossRef]

Yates, J.T.

A. L. Linsebigler, G. Lu, J.T. Yates, “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results,” Chem. Rev. 95, 735–758 (1995).
[CrossRef]

Ye, J.

Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414, 625–627 (2001).
[CrossRef] [PubMed]

Yeh, C.

C. Chou, R. Yang, C. Yeh, Y. Lin, “Preparation of tio2/nano-metal composite particles and thier applications in dye-sensitized solar cells,” Powder Technol. 194, 95–105 (2009).
[CrossRef]

Yokota, Y.

Y. Yokota, K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical characterization of plasmonic metallic nanostructures fabricated by high-resolution lithography,” J. Nanophotonics 1, 011594 (2008).
[CrossRef]

Zakeeruddin, S. M.

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

Zakrzewska, K.

M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181, 46–55 (2008).
[CrossRef]

Zhang, X.

A. Fujishima, X. Zhang, D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63, 515–582 (2008).
[CrossRef]

Zhao, J. H.

J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

Zou, Z.

Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414, 625–627 (2001).
[CrossRef] [PubMed]

Acc. Chem. Res.

B. Parkinson, “On the efficiency and stability of photoelectrochemical. devices,” Acc. Chem. Res. 17, 431–437 (1984).
[CrossRef]

Adv. Mat.

E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mat. 16, 1686– 1708 (2004).
[CrossRef]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mat. 20, 26–29 (2008).
[CrossRef]

Appl. Phys. Lett.

K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, “29.5 percent-efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett. 65, 989–991 (1994).
[CrossRef]

J. H. Zhao, A. H. Wang, M. A. Green, F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

Chem. Rev.

A. L. Linsebigler, G. Lu, J.T. Yates, “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results,” Chem. Rev. 95, 735–758 (1995).
[CrossRef]

Chemija

A. Survila, P. Kalinauskas, I. Valsiūnas, “Photoelektrochemical properties of surface layers formed by anodic oxidation of titanium,” Chemija 10, 117–121 (1999).

K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, V. Jasulaitienė, “Oxygen evolution on mixed ruthenium and nickel oxide electrode,” Chemija 19, 1–6 (2008).

Electrochem. Comm.

R. Beranek, H. Kisch, “Surface-modified anodic TiO2 films for visible light photocurrent response,” Electrochem. Comm. 9, 761–766 (2007).
[CrossRef]

T. Lana-Villarreal, R. Gomez, “Interfacial electron transfer at TiO2 nanostructured electrodes modified with capped gold nanoparticles: The photoelectrochemistry of water oxidation,” Electrochem. Comm. 7, 1218–1224 (2005).
[CrossRef]

Electrochimica Acta

K. Juodkazis, J. Juodkazytė, T. Juodienė, V. Šukienė, I. Savickaja, “Alternative view of anodic surface oxidation of noble metals,” Electrochimica Acta 51, 6159–6164 (2006).
[CrossRef]

Fuel Cells

L. Carrette, K.A. Friedrich, U. Stimming, “Fuel cells: Fundamentals and applications,” Fuel Cells 1, 5–39 (2001).
[CrossRef]

Int. J. Hydr. Energ.

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. I. functional properties,” Int. J. Hydr. Energ. 32, 2609–2629 (2007).
[CrossRef]

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. III. kinetic effects,” Int. J. Hydr. Energ. 32, 2644–2650 (2007).
[CrossRef]

J. Nowotny, T. Bak, M. K. Nowotny, L. Sheppard, “Titanium dioxide for solar-hydrogen. IV. collective and local factors in photolysis of water,” Int. J. Hydr. Energ. 32, 2651–2659 (2007).
[CrossRef]

J. Alloys and Compounds

W. A. Badawy, “Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells,” J. Alloys and Compounds 464, 347–351 (2008).
[CrossRef]

J. Am. Chem. Soc.

R. Nakamura, Y. Nakato, “In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions,” J. Am. Chem. Soc. 126, 1290–1298 (2004).
[CrossRef] [PubMed]

R. Nakamura, T. Okamura, N. Ohashi, A. Imanishi, Y. Nakato, “Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidic solutions,” J. Am. Chem. Soc. 127, 12975–12983 (2005).
[CrossRef] [PubMed]

Y. Tian, T. Tatsuma, “Mechanismsand applications of plasmon-induced charge separationat tio2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[CrossRef] [PubMed]

Y. Tian, T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef] [PubMed]

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humpry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” J. Am. Chem. Soc. 123, 1613–1624 (2001).
[CrossRef] [PubMed]

J. Appl. Phys.

S. Pillipai, K. R. Catchpole, T. Trupke, M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

J. Electrochem. Soc.

C. Gutierrez, P. Salvador, “Mechanisms of competitive photoelectrochemical oxidation of I and H2O at n-TiO2 electrodes: A kinetic approach,” J. Electrochem. Soc. 133, 924–929 (1986).
[CrossRef]

J. Mater. Chem.

T. Hasobe, H. Imahori, S. Fukuzumi, P. V. Kamat, “Nanostructured assembly of porphyrin clusters for light energyconversion,” J. Mater. Chem. 13, 2515–2520 (2003).
[CrossRef]

J. Nanophotonics

Y. Yokota, K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, H. Misawa, “Optical characterization of plasmonic metallic nanostructures fabricated by high-resolution lithography,” J. Nanophotonics 1, 011594 (2008).
[CrossRef]

J. Phys. Chem. C

P. Salvador, C. Gutierrez, “The nature of surface states involved in the photo- and electroluminescence spectra of n-titanium dioxide electrodes,” J. Phys. Chem. C 84, 3696–3698 (1984).

H. Imahori, T. Umeyama, “Donor-acceptor nanoarchitecture on semiconducting electrodes forsolar energy conversion,” J. Phys. Chem. C 113, 9029–9039 (2009).
[CrossRef]

P. Salvador, “Kinetic approach to the photocurrent transients in water photoelectrolysis at n-titanium dioxide electrodes. 1. analysis of the ratio of the instantaneous to steady-state photocurrent,” J. Phys. Chem. C 89, 3683–3869 (1985).

P. V. Kamat, “Meeting the clean energy demand: Nanostructure architectures for solar energy conversion,” J. Phys. Chem. C 111, 2834–2860 (2007).
[CrossRef]

T. Tachikawa, M. Fujitsuka, T. Majima, “Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts,” J. Phys. Chem. C 111, 5259– 5275 (2007).
[CrossRef]

J. Power Sources

M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, “Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis,” J. Power Sources 181, 46–55 (2008).
[CrossRef]

J. Sol. Stat. Electrochem.

J. Juodkazytė, B. Šebeka, P. Kalinauskas, K. Juodkazis, “Light energy accumulation using Ti/RuO2 electrode as capacitor,” J. Sol. Stat. Electrochem. 14, 741–746 (2010).
[CrossRef]

K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, V. Jasulaitienė, “Nickel surface anodic oxidation and electrocatalysis of oxygen evolution,” J. Sol. Stat. Electrochem. 12, 1469–1479 (2008).
[CrossRef]

K. Juodkazis, J. Juodkazytė, V. Šukienė, A. Grigucevičienė, A. Selskis, “On the charge storage mechanism at RuO2/0.5 M H2SO4 interface,” J. Sol. Stat. Electrochem. 12, 1399–1404 (2008).
[CrossRef]

Jpn. J. Appl. Phys.

S. Juodkazis, A. Yamaguchi, H. Ishii, S. Matsuo, H. Takagi, H. Misawa, “Photo-electrochemical deposition of platinum on TiO2 with resolution of tens-of-nm by using a mask elaborated with electron-beam lithography,” Jpn. J. Appl. Phys. 40, 4246–4251 (2001).
[CrossRef]

Lith. J. Phys.

K. Juodkazis, J. Juodkazytė, Y. Tabuchi, S. Juodkazis, S. Matsuo, H. Misawa, “Deposition of platinum and irridium on Ti surface using femtosecond laser and electrochemical activation,” Lith. J. Phys. 43, 209–216 (2003).

Nature

Z. Zou, J. Ye, K. Sayama, H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,” Nature 414, 625–627 (2001).
[CrossRef] [PubMed]

A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238, 37–38 (1972).
[CrossRef] [PubMed]

M. Grätzel, “Photoelectrochemical cells,” Nature 414, 338– 344 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Organic Electronics

J. Lee, J. Park, J. Kim, D. Lee, K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Organic Electronics 10, 416–420 (2009).
[CrossRef]

Physics Today

T. W. Murphy, “Home photovoltaic systems for physicists,” Physics Today, 42– 47 (2008).
[CrossRef]

G. W. Crabtree, N. S. Lewis, “Solar energy conversion,” Physics Today 60, 37 – 42 (2007).
[CrossRef]

Powder Technol.

C. Chou, R. Yang, C. Yeh, Y. Lin, “Preparation of tio2/nano-metal composite particles and thier applications in dye-sensitized solar cells,” Powder Technol. 194, 95–105 (2009).
[CrossRef]

Prog. Photovolt

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables (version 31),” Prog. Photovolt. 16, 61–67 (2008).
[CrossRef]

Renew. and Sustain. Ener. Rev.

M. Ni, M. K. H. Leung, D. Y. Leung, K. Sumathy, “A review and recent developments in photocatalytic water splitting using TiO2 for hydrogen production,” Renew. and Sustain. Ener. Rev. 11, 401–425 (2007).
[CrossRef]

Solar Ener. Mat. and Solar Cells

G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, “A review on highly-ordered TiO2 nanotube-arrays: fabrication, material properties, and solar energy applications,” Solar Ener. Mat. and Solar Cells 90, 2011–2075 (2006).
[CrossRef]

Solar Energ. Mat. and Solar Cells

E. L. Miller, D. Paluselli, B. Marsen, R. E. Rocheleau, “Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes,” Solar Energ. Mat. and Solar Cells 88(2), 131–144 (2005).
[CrossRef]

U. S. Avachat, A. H. Jahagirdar, N. G. Dhere, “Multiple bandgap combination of thin film photovoltaic cells and a photoanode for efficient hydrogen and oxygen generation by water splitting,” Solar Energ. Mat. and Solar Cells 90, 2464–2470 (2006).
[CrossRef]

Solar Energy

V. M. Aroutiounian, V. M. Arakelyan, G. E. Shahnazaryan, “Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting,” Solar Energy 78, 581–592 (2005).
[CrossRef]

Surf. Sci. Rep.

A. Fujishima, X. Zhang, D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63, 515–582 (2008).
[CrossRef]

Thin Solid Films

N. Dhere, A. H. Jahagirdar, “Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO2 photocatalyst,” Thin Solid Films 480–481, 462–465 (2005).
[CrossRef]

Transact. Inst. of Metal Finishing

J. Juodkazytė, R. Vilkauskaitė, B. Šebeka, K. Juodkazis, “Difference between surface electrochemistry of ruthenium and RuO2 electrodes,” Transact. Inst. of Metal Finishing 85, 194–201 (2007).
[CrossRef]

Other

D. Dobos, Electrochemical Data (Mir, Moscow, 1980).

K. J. Vetter, Elektrochemische kinetik (Springer-Verlag, Berlin-Gottingen, 1961).

N. Sato, Electrochemistry at metal and semiconductor electrodes (Elsevier Science, Amsterdam, 1998).

M. Pourbaix, Atlas d’équilibres électrochimiques (Gauthier-Villars, Paris, 1963).
[PubMed]

Comparison of photon energy with potential E0 = 1.23 V. According to ΔG = –nFE0, where G represents the isobaric-isothermal potential (Gibbs energy) of the reaction or the chemical potential of the substance, n is the number of electrons, and F is the Faraday constant, in the case of formation of water molecule H2 + ½O2 = H2O, one would find: ΔG = −2 × 96500 × 1.23 = −2.37390 × 105 (J mol−1). As there are two H-O bonds in H2O molecule, the energy corresponding to one bond is 18695 J mol−1 or 7.409 × 1023 eV mol−1. Division of the latter value by Avogadro number NA = 6.02 × 1023, gives the energy of one chemical bond, 1.23 eV. This is the minimum photon energy required to break the bond between H and O in H2O molecule.

V. Mizeikis, E. Kowalska, S. Juodkazis, “Resonant localization, enhancement, and polarization of optical fields in nano-scale interface regions for photo-catalytic applications,” J. Nanosci. Nanotechnol.2010 (in press).

L. Han, A. Islam, N. Koide, R. Yamanaka, “Alternative technology enables large-area solar-cell production,” SPIE Newsroom, doi: (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematics of water photoelectrolysis cell with external power source and equipment for the measurement of electric parameters. (b) The equivalent scheme of the electric circuit. WE, RE, CE - working, reference and counter electrodes, respectively, GC - gas chromatograph, ΔEext - voltage of external power source, ΔEph - voltage of photocurrent source, Iph - photocurrent, hν- photon energy.

Fig. 2
Fig. 2

(a) Schematics of Si solar cell with electric scheme for cell voltage Vph and photocurrent Iph measurement. (b) Typical photocurrent vs. photovoltage response when electric circuit resistance R varies from R = ∞ (open-circuit) to R = 0 (short circuit). Definition of the fill factor, FF, is schematically shown.

Fig. 3
Fig. 3

(a) Photo-processes on an illuminated TiO2 electrode at anodic bias. (b) Schematic potential diagram of TiO2 surface state under UV illumination, open-circuit (Iph = 0) and photoelectrolysis (Iph ≠ 0) conditions. ΔEext - voltage of external power source, ΔEph - voltage of photocurrent source, p E F h ν and n E F h ν - potential values corresponding to Fermi levels of holes and photoelectrons in UV-illuminated TiO2 surface under open-circuit conditions; Ea and Ec - potentials of anode and cathode under water photoelectrolysis conditions in PEC; ηa and ηc - overvoltage or polarization of anodic and cathodic processes: ηa,c = EiEi=0; ECB and EVB - potential values corresponding to TiO2 conductive and valence bands, E B G T i O 2 - voltage corresponding to TiO2 band gap, HER and OER - hydrogen and oxygen evolution reactions, respectively; voltammograms: 1 - HER on Pt electrode, 2 - real OER on TiO2 surface, 3 - visually observed OER on Ti/TiO2 electrode (see text for details). Iph can vary from ∼ 0.01 to ∼ 10 mA cm−2 depending on the experimental conditions.

Fig. 4
Fig. 4

(a) Schematic representation of water electrolyzer using solar cells connected in series and in parallel as source of photocurrent. (b) Optimal voltammograms of anodic and cathodic processes of water electrolysis in alkaline electrolyte. (c) Comparison of average ECE in visible spectral region for light energy conversion using Ti/TiO2 photoelectrode, DSSC, Si [43] and tandem GaInP/GaAs solar cells.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

H 2 O h ν H 2 + 1 / 2 O 2
I P C E = Q E = F l u x o f e l e c t r o n s F l u x o f p h o t o n s = I p h / q P / h ν = I p h h ν P q = I p h E h ν P 100 ( % ) ,
E C E = P o u t P 100 ( % ) .
E C E = I p h m p p V m p p P = I p h s c V p h o c F F P 100 ( % ) ,
E C E = ( I p h E O 2 / H 2 O 0 I p h Δ E e x t ) P 100 ( % ) ,
E C E = I p h E O 2 / H 2 O 0 P 100 ( % ) .
θ = E O 2 / H 2 O 0 E a E c 100 ( % ) ,
V H 2 = 22.4 I t 53.6 = 0.418 I t ,
2 TiO 2 h ν TiO 2 + + TiO 2
2 H 2 O 4 e O 2 + 5 H +
H 2 O e OH + H + .
TiO 2 h ν , E a TiO 2 + + e , ( h ν 3.2 eV )
TiO 2 + + H 2 O TiO 2 ( OH ) ads + H + , ( E OH / H 2 O 0 = 2.8 V )
TiO 2 ( OH ) ads TiO 3 + H + + e , ( E O / H 2 O 0 = 2.4 V )
TiO 3 TiOO 2 ( Ti ( 4 + ) peroxide )
TiOO 2 + H 2 O TiO 2 + H 2 O 2
H 2 O 2 O 2 + 2 H + + 2 e ( E O 2 / H 2 O 2 0 = 0.68 V )
2 H 2 O 2 2 H 2 O + O 2 ( disproportionation ) .
2 H 2 O + 4 h + h ν = 3.2 e V E 2.8 V O 2 + 4 H + .

Metrics