Abstract

This review article develops some of the underlying science for converting concentrated solar energy into chemical fuels and presents examples of solar thermochemical processes and reactors.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Steinfeld, and R. Palumbo, “Solar Thermochemical Process Technology, Encyclopedia of Physical Science and Technology”, R. A. Meyers Ed., Academic Press 15, 237–256 (2001).
  2. E. A. Fletcher and R. L. Moen, “Hydrogen- and Oxygen from Water,” Science 197(4308), 1050–1056 (1977).
    [CrossRef] [PubMed]
  3. A. Steinfeld, “Solar Thermochemical Production of Hydrogen - A Review,” Sol. Energy 78(5), 603–615 (2005).
    [CrossRef]
  4. A. Steinfeld, “Solar Hydrogen Production via a 2-step Water-Splitting Thermochemical Cycle based on Zn/ZnO Redox Reactions,” Int. J. Hydrogen Energy 27(6), 611–619 (2002).
    [CrossRef]
  5. C. Perkins and A. W. Weimer, “Likely near-term solar-thermal water splitting technologies,” Int. J. Hydrogen Energy 29(15), 1587–1599 (2004).
    [CrossRef]
  6. H. Funke, H. Diaz, X. Liang, C. Carney, A. W. Weimer, and P. Li, “Hydrogen generation by hydrolysis of zinc powder aerosol,” Int. J. Hydrogen Energy 33(4), 1127–1134 (2008).
    [CrossRef]
  7. T. Melchior, N. Piatkowski, and A. Steinfeld, “H2 production by steam-quenching of Zn vapor in a hot-wall aerosol flow reactor,” Chem. Eng. Sci. 64(5), 1095–1101 (2009).
    [CrossRef]
  8. T. Abu Hamed, J. H. Davidson, and M. Stolzenburg, “Hydrolysis of evaporated Zn in a hot wall flow reaction,” J. Sol. Energy Eng. 130(4), 041010–041011 (2008).
    [CrossRef]
  9. P. Charvin, S. Abanades, G. Flamant, and F. Lemort, “Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production,” Energy 32(7), 1124–1133 (2007).
    [CrossRef]
  10. areF. Fresno, R. Fernández-Saavedra, M. Belén Gómez-Mancebo, A. Vidal, M. Sánchez, M. Isabel Rucandio, A. J. Quejido, and M. Romero, “Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites,” Int. J. Hydrogen Energy 34(7), 2918–2924 (2009).
    [CrossRef]
  11. M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006).
    [CrossRef]
  12. N. Gokon, H. Murayama, A. Nagasaki, and T. Kodama, “Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices,” Sol. Energy 83(4), 527–537 (2009).
    [CrossRef]
  13. H. Ishihara, H. Kaneko, N. Hasegawa, and Y. Tamaura, “Two-step water-splitting at 1273–1623 K using yttria-stabilized zirconia-iron oxide solid solution via co-precipitation and solid-state reaction,” Energy 33(12), 1788–1793 (2008).
    [CrossRef]
  14. P. Loutzenhiser, M. E. Gálvez, I. Hischier, A. Stamatiou, A. Frei, and A. Steinfeld, “CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic analysis,” Energy Fuels 23(5), 2832–2839 (2009).
    [CrossRef]
  15. J. E. Miller, M. D. Allendorf, R. B. Diver, L. R. Evans, N. P. Siegel, and J. N. Stuecker, “Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles,” J. Mater. Sci. 43(14), 4714–4728 (2008).
    [CrossRef]
  16. M. D. Allendorf, R. B. Diver, N. P. Siegel, and J. E. Miller, “Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials,” Energy Fuels 22(6), 4115–4124 (2008).
    [CrossRef]
  17. W. C. Chueh and S. M. Haile, “Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H(2)O and CO(2),” ChemSusChem 2(8), 735–739 (2009).
    [CrossRef] [PubMed]
  18. L. O. Schunk, P. Haeberling, S. Wepf, D. Wuillemin, A. Meier, and A. Steinfeld, “A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide,” J. Sol. Energy Eng. 130(2), 021009 (2008).
    [CrossRef]
  19. L. Schunk, W. Lipinski, and A. Steinfeld, “Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO – Experimental validation at 10 kW and scale-up to 1 MW,” Chem. Eng. J. 150(2-3), 502–508 (2009).
    [CrossRef]
  20. J. Martinek, M. Channel, A. Lewandowski, and A. W. Weimer, “Considerations for the Design of Solar-thermal Chemical Processes,” J. Sol. Energy Eng. in press.
  21. P. Zedtwitz, J. Petrasch, D. Trommer, and A. Steinfeld, “Solar Hydrogen Production via the Solar Thermal Decarbonization of Fossil Fuels,” Sol. Energy 80(10), 1333–1337 (2006).
    [CrossRef]
  22. G. Maag, G. Zanganeh, and A. Steinfeld, “Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon,” Int. J. Hydrogen Energy 34(18), 7676–7685 (2009).
    [CrossRef]
  23. S. Moeller, R. Buck, R. Tamme, M. Epstein, D. Liebermann, M. Moshe, U. Fisher, A. Rotstein, and C. Sugarmen, “Solar production of syngas for electricity generation, SOLASYS project test-phase”, In, Proceedings of the 11th SolarPACES Int. Symposium on Concentrated Solar Power and Chemical Energy Technologies, Steinfeld A. (Ed.), Zurich, Switzerland, 231–237 (2002).
  24. A. Zgraggen, P. Haueter, D. Trommer, M. Romero, J. Dejesus, and A. Steinfeld, “Hydrogen Production by Steam-Gasification of Petroleum Coke using Concentrated Solar Power − II. Reactor Design, Testing, and Modeling,” Int. J. Hydrogen Energy 31(6), 797–811 (2006).
    [CrossRef]
  25. R. Mueller, P. von Zedtwitz, A. Wokaun, and A. Steinfeld, “Kinetic investigation on steam gasification of charcoal under direct high flux irradiation,” Chem. Eng. Sci. 58(22), 5111–5119 (2003).
    [CrossRef]
  26. P. von Zedwitz and A. Steinfeld, “Steam-Gasification of Coal in a Fluidized-Bed/Packed-Bed Reactor Exposed to Concentrated Thermal Radiation - Modeling and Experimental Validation,” Ind. Eng. Chem. Res. 44(11), 3852–3861 (2005).
    [CrossRef]
  27. A. Zgraggen and A. Steinfeld, “Heat and mass transfer analysis of a suspension of reacting particles subjected to concentrated solar radiation – Application to the steam-gasification of carbonaceous materials,” Int. J. Heat Mass Transfer 52(1-2), 385–395 (2009).
    [CrossRef]
  28. T. Melchior, C. Perkins, P. Lichty, A. W. Weimer, and A. Steinfeld, “Solar-driven biochar gasification in a particle-flow reactor,” Chem. Eng. Process. 48(8), 1279–1287 (2009).
  29. P. Lichty, C. Perkins, B. Woodruff, C. Bingham, and A. W. Weimer, “Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor,” J. Sol. Energy Eng. 132(1), 011012 (2010).
    [CrossRef]
  30. N. Piatkowski and A. Steinfeld, “Solar-driven coal gasification in a thermally irradiated packed-bed reactor,” Energy Fuels 22(3), 2043–2052 (2008).
    [CrossRef]
  31. N. Piatkowski, C. Wieckert, and A. Steinfeld, “Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks,” Fuel Process. Technol. 90(3), 360–366 (2009).
    [CrossRef]
  32. R. F. Service, “Solar fuels. Biomass fuel starts to see the light,” Science 326(5959), 1474 (2009).
    [CrossRef] [PubMed]

2010

P. Lichty, C. Perkins, B. Woodruff, C. Bingham, and A. W. Weimer, “Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor,” J. Sol. Energy Eng. 132(1), 011012 (2010).
[CrossRef]

2009

A. Zgraggen and A. Steinfeld, “Heat and mass transfer analysis of a suspension of reacting particles subjected to concentrated solar radiation – Application to the steam-gasification of carbonaceous materials,” Int. J. Heat Mass Transfer 52(1-2), 385–395 (2009).
[CrossRef]

T. Melchior, C. Perkins, P. Lichty, A. W. Weimer, and A. Steinfeld, “Solar-driven biochar gasification in a particle-flow reactor,” Chem. Eng. Process. 48(8), 1279–1287 (2009).

G. Maag, G. Zanganeh, and A. Steinfeld, “Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon,” Int. J. Hydrogen Energy 34(18), 7676–7685 (2009).
[CrossRef]

N. Piatkowski, C. Wieckert, and A. Steinfeld, “Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks,” Fuel Process. Technol. 90(3), 360–366 (2009).
[CrossRef]

R. F. Service, “Solar fuels. Biomass fuel starts to see the light,” Science 326(5959), 1474 (2009).
[CrossRef] [PubMed]

T. Melchior, N. Piatkowski, and A. Steinfeld, “H2 production by steam-quenching of Zn vapor in a hot-wall aerosol flow reactor,” Chem. Eng. Sci. 64(5), 1095–1101 (2009).
[CrossRef]

areF. Fresno, R. Fernández-Saavedra, M. Belén Gómez-Mancebo, A. Vidal, M. Sánchez, M. Isabel Rucandio, A. J. Quejido, and M. Romero, “Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites,” Int. J. Hydrogen Energy 34(7), 2918–2924 (2009).
[CrossRef]

N. Gokon, H. Murayama, A. Nagasaki, and T. Kodama, “Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices,” Sol. Energy 83(4), 527–537 (2009).
[CrossRef]

P. Loutzenhiser, M. E. Gálvez, I. Hischier, A. Stamatiou, A. Frei, and A. Steinfeld, “CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic analysis,” Energy Fuels 23(5), 2832–2839 (2009).
[CrossRef]

W. C. Chueh and S. M. Haile, “Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H(2)O and CO(2),” ChemSusChem 2(8), 735–739 (2009).
[CrossRef] [PubMed]

L. Schunk, W. Lipinski, and A. Steinfeld, “Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO – Experimental validation at 10 kW and scale-up to 1 MW,” Chem. Eng. J. 150(2-3), 502–508 (2009).
[CrossRef]

2008

L. O. Schunk, P. Haeberling, S. Wepf, D. Wuillemin, A. Meier, and A. Steinfeld, “A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide,” J. Sol. Energy Eng. 130(2), 021009 (2008).
[CrossRef]

J. E. Miller, M. D. Allendorf, R. B. Diver, L. R. Evans, N. P. Siegel, and J. N. Stuecker, “Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles,” J. Mater. Sci. 43(14), 4714–4728 (2008).
[CrossRef]

M. D. Allendorf, R. B. Diver, N. P. Siegel, and J. E. Miller, “Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials,” Energy Fuels 22(6), 4115–4124 (2008).
[CrossRef]

H. Ishihara, H. Kaneko, N. Hasegawa, and Y. Tamaura, “Two-step water-splitting at 1273–1623 K using yttria-stabilized zirconia-iron oxide solid solution via co-precipitation and solid-state reaction,” Energy 33(12), 1788–1793 (2008).
[CrossRef]

T. Abu Hamed, J. H. Davidson, and M. Stolzenburg, “Hydrolysis of evaporated Zn in a hot wall flow reaction,” J. Sol. Energy Eng. 130(4), 041010–041011 (2008).
[CrossRef]

H. Funke, H. Diaz, X. Liang, C. Carney, A. W. Weimer, and P. Li, “Hydrogen generation by hydrolysis of zinc powder aerosol,” Int. J. Hydrogen Energy 33(4), 1127–1134 (2008).
[CrossRef]

N. Piatkowski and A. Steinfeld, “Solar-driven coal gasification in a thermally irradiated packed-bed reactor,” Energy Fuels 22(3), 2043–2052 (2008).
[CrossRef]

2007

P. Charvin, S. Abanades, G. Flamant, and F. Lemort, “Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production,” Energy 32(7), 1124–1133 (2007).
[CrossRef]

2006

M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006).
[CrossRef]

P. Zedtwitz, J. Petrasch, D. Trommer, and A. Steinfeld, “Solar Hydrogen Production via the Solar Thermal Decarbonization of Fossil Fuels,” Sol. Energy 80(10), 1333–1337 (2006).
[CrossRef]

A. Zgraggen, P. Haueter, D. Trommer, M. Romero, J. Dejesus, and A. Steinfeld, “Hydrogen Production by Steam-Gasification of Petroleum Coke using Concentrated Solar Power − II. Reactor Design, Testing, and Modeling,” Int. J. Hydrogen Energy 31(6), 797–811 (2006).
[CrossRef]

2005

P. von Zedwitz and A. Steinfeld, “Steam-Gasification of Coal in a Fluidized-Bed/Packed-Bed Reactor Exposed to Concentrated Thermal Radiation - Modeling and Experimental Validation,” Ind. Eng. Chem. Res. 44(11), 3852–3861 (2005).
[CrossRef]

A. Steinfeld, “Solar Thermochemical Production of Hydrogen - A Review,” Sol. Energy 78(5), 603–615 (2005).
[CrossRef]

2004

C. Perkins and A. W. Weimer, “Likely near-term solar-thermal water splitting technologies,” Int. J. Hydrogen Energy 29(15), 1587–1599 (2004).
[CrossRef]

2003

R. Mueller, P. von Zedtwitz, A. Wokaun, and A. Steinfeld, “Kinetic investigation on steam gasification of charcoal under direct high flux irradiation,” Chem. Eng. Sci. 58(22), 5111–5119 (2003).
[CrossRef]

2002

A. Steinfeld, “Solar Hydrogen Production via a 2-step Water-Splitting Thermochemical Cycle based on Zn/ZnO Redox Reactions,” Int. J. Hydrogen Energy 27(6), 611–619 (2002).
[CrossRef]

1977

E. A. Fletcher and R. L. Moen, “Hydrogen- and Oxygen from Water,” Science 197(4308), 1050–1056 (1977).
[CrossRef] [PubMed]

Abanades, S.

P. Charvin, S. Abanades, G. Flamant, and F. Lemort, “Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production,” Energy 32(7), 1124–1133 (2007).
[CrossRef]

Abu Hamed, T.

T. Abu Hamed, J. H. Davidson, and M. Stolzenburg, “Hydrolysis of evaporated Zn in a hot wall flow reaction,” J. Sol. Energy Eng. 130(4), 041010–041011 (2008).
[CrossRef]

Agrafiotis, C.

M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006).
[CrossRef]

Allendorf, M. D.

J. E. Miller, M. D. Allendorf, R. B. Diver, L. R. Evans, N. P. Siegel, and J. N. Stuecker, “Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles,” J. Mater. Sci. 43(14), 4714–4728 (2008).
[CrossRef]

M. D. Allendorf, R. B. Diver, N. P. Siegel, and J. E. Miller, “Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials,” Energy Fuels 22(6), 4115–4124 (2008).
[CrossRef]

Belén Gómez-Mancebo, M.

areF. Fresno, R. Fernández-Saavedra, M. Belén Gómez-Mancebo, A. Vidal, M. Sánchez, M. Isabel Rucandio, A. J. Quejido, and M. Romero, “Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites,” Int. J. Hydrogen Energy 34(7), 2918–2924 (2009).
[CrossRef]

Bingham, C.

P. Lichty, C. Perkins, B. Woodruff, C. Bingham, and A. W. Weimer, “Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor,” J. Sol. Energy Eng. 132(1), 011012 (2010).
[CrossRef]

Carney, C.

H. Funke, H. Diaz, X. Liang, C. Carney, A. W. Weimer, and P. Li, “Hydrogen generation by hydrolysis of zinc powder aerosol,” Int. J. Hydrogen Energy 33(4), 1127–1134 (2008).
[CrossRef]

Channel, M.

J. Martinek, M. Channel, A. Lewandowski, and A. W. Weimer, “Considerations for the Design of Solar-thermal Chemical Processes,” J. Sol. Energy Eng. in press.

Charvin, P.

P. Charvin, S. Abanades, G. Flamant, and F. Lemort, “Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production,” Energy 32(7), 1124–1133 (2007).
[CrossRef]

Chueh, W. C.

W. C. Chueh and S. M. Haile, “Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H(2)O and CO(2),” ChemSusChem 2(8), 735–739 (2009).
[CrossRef] [PubMed]

Davidson, J. H.

T. Abu Hamed, J. H. Davidson, and M. Stolzenburg, “Hydrolysis of evaporated Zn in a hot wall flow reaction,” J. Sol. Energy Eng. 130(4), 041010–041011 (2008).
[CrossRef]

de Oliveira, L.

M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006).
[CrossRef]

Dejesus, J.

A. Zgraggen, P. Haueter, D. Trommer, M. Romero, J. Dejesus, and A. Steinfeld, “Hydrogen Production by Steam-Gasification of Petroleum Coke using Concentrated Solar Power − II. Reactor Design, Testing, and Modeling,” Int. J. Hydrogen Energy 31(6), 797–811 (2006).
[CrossRef]

Diaz, H.

H. Funke, H. Diaz, X. Liang, C. Carney, A. W. Weimer, and P. Li, “Hydrogen generation by hydrolysis of zinc powder aerosol,” Int. J. Hydrogen Energy 33(4), 1127–1134 (2008).
[CrossRef]

Diver, R. B.

M. D. Allendorf, R. B. Diver, N. P. Siegel, and J. E. Miller, “Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials,” Energy Fuels 22(6), 4115–4124 (2008).
[CrossRef]

J. E. Miller, M. D. Allendorf, R. B. Diver, L. R. Evans, N. P. Siegel, and J. N. Stuecker, “Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles,” J. Mater. Sci. 43(14), 4714–4728 (2008).
[CrossRef]

Evans, L. R.

J. E. Miller, M. D. Allendorf, R. B. Diver, L. R. Evans, N. P. Siegel, and J. N. Stuecker, “Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles,” J. Mater. Sci. 43(14), 4714–4728 (2008).
[CrossRef]

Fernández-Saavedra, R.

areF. Fresno, R. Fernández-Saavedra, M. Belén Gómez-Mancebo, A. Vidal, M. Sánchez, M. Isabel Rucandio, A. J. Quejido, and M. Romero, “Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites,” Int. J. Hydrogen Energy 34(7), 2918–2924 (2009).
[CrossRef]

Flamant, G.

P. Charvin, S. Abanades, G. Flamant, and F. Lemort, “Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production,” Energy 32(7), 1124–1133 (2007).
[CrossRef]

Fletcher, E. A.

E. A. Fletcher and R. L. Moen, “Hydrogen- and Oxygen from Water,” Science 197(4308), 1050–1056 (1977).
[CrossRef] [PubMed]

Frei, A.

P. Loutzenhiser, M. E. Gálvez, I. Hischier, A. Stamatiou, A. Frei, and A. Steinfeld, “CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic analysis,” Energy Fuels 23(5), 2832–2839 (2009).
[CrossRef]

Fresno, F.

areF. Fresno, R. Fernández-Saavedra, M. Belén Gómez-Mancebo, A. Vidal, M. Sánchez, M. Isabel Rucandio, A. J. Quejido, and M. Romero, “Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites,” Int. J. Hydrogen Energy 34(7), 2918–2924 (2009).
[CrossRef]

Funke, H.

H. Funke, H. Diaz, X. Liang, C. Carney, A. W. Weimer, and P. Li, “Hydrogen generation by hydrolysis of zinc powder aerosol,” Int. J. Hydrogen Energy 33(4), 1127–1134 (2008).
[CrossRef]

Gálvez, M. E.

P. Loutzenhiser, M. E. Gálvez, I. Hischier, A. Stamatiou, A. Frei, and A. Steinfeld, “CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic analysis,” Energy Fuels 23(5), 2832–2839 (2009).
[CrossRef]

Gokon, N.

N. Gokon, H. Murayama, A. Nagasaki, and T. Kodama, “Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices,” Sol. Energy 83(4), 527–537 (2009).
[CrossRef]

Haeberling, P.

L. O. Schunk, P. Haeberling, S. Wepf, D. Wuillemin, A. Meier, and A. Steinfeld, “A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide,” J. Sol. Energy Eng. 130(2), 021009 (2008).
[CrossRef]

Haile, S. M.

W. C. Chueh and S. M. Haile, “Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H(2)O and CO(2),” ChemSusChem 2(8), 735–739 (2009).
[CrossRef] [PubMed]

Hasegawa, N.

H. Ishihara, H. Kaneko, N. Hasegawa, and Y. Tamaura, “Two-step water-splitting at 1273–1623 K using yttria-stabilized zirconia-iron oxide solid solution via co-precipitation and solid-state reaction,” Energy 33(12), 1788–1793 (2008).
[CrossRef]

Haueter, P.

A. Zgraggen, P. Haueter, D. Trommer, M. Romero, J. Dejesus, and A. Steinfeld, “Hydrogen Production by Steam-Gasification of Petroleum Coke using Concentrated Solar Power − II. Reactor Design, Testing, and Modeling,” Int. J. Hydrogen Energy 31(6), 797–811 (2006).
[CrossRef]

Hischier, I.

P. Loutzenhiser, M. E. Gálvez, I. Hischier, A. Stamatiou, A. Frei, and A. Steinfeld, “CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic analysis,” Energy Fuels 23(5), 2832–2839 (2009).
[CrossRef]

Isabel Rucandio, M.

areF. Fresno, R. Fernández-Saavedra, M. Belén Gómez-Mancebo, A. Vidal, M. Sánchez, M. Isabel Rucandio, A. J. Quejido, and M. Romero, “Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites,” Int. J. Hydrogen Energy 34(7), 2918–2924 (2009).
[CrossRef]

Ishihara, H.

H. Ishihara, H. Kaneko, N. Hasegawa, and Y. Tamaura, “Two-step water-splitting at 1273–1623 K using yttria-stabilized zirconia-iron oxide solid solution via co-precipitation and solid-state reaction,” Energy 33(12), 1788–1793 (2008).
[CrossRef]

Kaneko, H.

H. Ishihara, H. Kaneko, N. Hasegawa, and Y. Tamaura, “Two-step water-splitting at 1273–1623 K using yttria-stabilized zirconia-iron oxide solid solution via co-precipitation and solid-state reaction,” Energy 33(12), 1788–1793 (2008).
[CrossRef]

Klüser, R.

M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006).
[CrossRef]

Kodama, T.

N. Gokon, H. Murayama, A. Nagasaki, and T. Kodama, “Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices,” Sol. Energy 83(4), 527–537 (2009).
[CrossRef]

Konstandopoulos, A. G.

M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006).
[CrossRef]

Lemort, F.

P. Charvin, S. Abanades, G. Flamant, and F. Lemort, “Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production,” Energy 32(7), 1124–1133 (2007).
[CrossRef]

Lewandowski, A.

J. Martinek, M. Channel, A. Lewandowski, and A. W. Weimer, “Considerations for the Design of Solar-thermal Chemical Processes,” J. Sol. Energy Eng. in press.

Li, P.

H. Funke, H. Diaz, X. Liang, C. Carney, A. W. Weimer, and P. Li, “Hydrogen generation by hydrolysis of zinc powder aerosol,” Int. J. Hydrogen Energy 33(4), 1127–1134 (2008).
[CrossRef]

Liang, X.

H. Funke, H. Diaz, X. Liang, C. Carney, A. W. Weimer, and P. Li, “Hydrogen generation by hydrolysis of zinc powder aerosol,” Int. J. Hydrogen Energy 33(4), 1127–1134 (2008).
[CrossRef]

Lichty, P.

P. Lichty, C. Perkins, B. Woodruff, C. Bingham, and A. W. Weimer, “Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor,” J. Sol. Energy Eng. 132(1), 011012 (2010).
[CrossRef]

T. Melchior, C. Perkins, P. Lichty, A. W. Weimer, and A. Steinfeld, “Solar-driven biochar gasification in a particle-flow reactor,” Chem. Eng. Process. 48(8), 1279–1287 (2009).

Lipinski, W.

L. Schunk, W. Lipinski, and A. Steinfeld, “Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO – Experimental validation at 10 kW and scale-up to 1 MW,” Chem. Eng. J. 150(2-3), 502–508 (2009).
[CrossRef]

Loutzenhiser, P.

P. Loutzenhiser, M. E. Gálvez, I. Hischier, A. Stamatiou, A. Frei, and A. Steinfeld, “CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic analysis,” Energy Fuels 23(5), 2832–2839 (2009).
[CrossRef]

Maag, G.

G. Maag, G. Zanganeh, and A. Steinfeld, “Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon,” Int. J. Hydrogen Energy 34(18), 7676–7685 (2009).
[CrossRef]

Martinek, J.

J. Martinek, M. Channel, A. Lewandowski, and A. W. Weimer, “Considerations for the Design of Solar-thermal Chemical Processes,” J. Sol. Energy Eng. in press.

Meier, A.

L. O. Schunk, P. Haeberling, S. Wepf, D. Wuillemin, A. Meier, and A. Steinfeld, “A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide,” J. Sol. Energy Eng. 130(2), 021009 (2008).
[CrossRef]

Melchior, T.

T. Melchior, N. Piatkowski, and A. Steinfeld, “H2 production by steam-quenching of Zn vapor in a hot-wall aerosol flow reactor,” Chem. Eng. Sci. 64(5), 1095–1101 (2009).
[CrossRef]

T. Melchior, C. Perkins, P. Lichty, A. W. Weimer, and A. Steinfeld, “Solar-driven biochar gasification in a particle-flow reactor,” Chem. Eng. Process. 48(8), 1279–1287 (2009).

Miller, J. E.

M. D. Allendorf, R. B. Diver, N. P. Siegel, and J. E. Miller, “Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials,” Energy Fuels 22(6), 4115–4124 (2008).
[CrossRef]

J. E. Miller, M. D. Allendorf, R. B. Diver, L. R. Evans, N. P. Siegel, and J. N. Stuecker, “Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles,” J. Mater. Sci. 43(14), 4714–4728 (2008).
[CrossRef]

Moen, R. L.

E. A. Fletcher and R. L. Moen, “Hydrogen- and Oxygen from Water,” Science 197(4308), 1050–1056 (1977).
[CrossRef] [PubMed]

Monnerie, N.

M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006).
[CrossRef]

Mueller, R.

R. Mueller, P. von Zedtwitz, A. Wokaun, and A. Steinfeld, “Kinetic investigation on steam gasification of charcoal under direct high flux irradiation,” Chem. Eng. Sci. 58(22), 5111–5119 (2003).
[CrossRef]

Murayama, H.

N. Gokon, H. Murayama, A. Nagasaki, and T. Kodama, “Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices,” Sol. Energy 83(4), 527–537 (2009).
[CrossRef]

Nagasaki, A.

N. Gokon, H. Murayama, A. Nagasaki, and T. Kodama, “Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices,” Sol. Energy 83(4), 527–537 (2009).
[CrossRef]

Nalbandian, L.

M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006).
[CrossRef]

Perkins, C.

P. Lichty, C. Perkins, B. Woodruff, C. Bingham, and A. W. Weimer, “Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor,” J. Sol. Energy Eng. 132(1), 011012 (2010).
[CrossRef]

T. Melchior, C. Perkins, P. Lichty, A. W. Weimer, and A. Steinfeld, “Solar-driven biochar gasification in a particle-flow reactor,” Chem. Eng. Process. 48(8), 1279–1287 (2009).

C. Perkins and A. W. Weimer, “Likely near-term solar-thermal water splitting technologies,” Int. J. Hydrogen Energy 29(15), 1587–1599 (2004).
[CrossRef]

Petrasch, J.

P. Zedtwitz, J. Petrasch, D. Trommer, and A. Steinfeld, “Solar Hydrogen Production via the Solar Thermal Decarbonization of Fossil Fuels,” Sol. Energy 80(10), 1333–1337 (2006).
[CrossRef]

Piatkowski, N.

N. Piatkowski, C. Wieckert, and A. Steinfeld, “Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks,” Fuel Process. Technol. 90(3), 360–366 (2009).
[CrossRef]

T. Melchior, N. Piatkowski, and A. Steinfeld, “H2 production by steam-quenching of Zn vapor in a hot-wall aerosol flow reactor,” Chem. Eng. Sci. 64(5), 1095–1101 (2009).
[CrossRef]

N. Piatkowski and A. Steinfeld, “Solar-driven coal gasification in a thermally irradiated packed-bed reactor,” Energy Fuels 22(3), 2043–2052 (2008).
[CrossRef]

Quejido, A. J.

areF. Fresno, R. Fernández-Saavedra, M. Belén Gómez-Mancebo, A. Vidal, M. Sánchez, M. Isabel Rucandio, A. J. Quejido, and M. Romero, “Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites,” Int. J. Hydrogen Energy 34(7), 2918–2924 (2009).
[CrossRef]

Roeb, M.

M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006).
[CrossRef]

Romero, M.

areF. Fresno, R. Fernández-Saavedra, M. Belén Gómez-Mancebo, A. Vidal, M. Sánchez, M. Isabel Rucandio, A. J. Quejido, and M. Romero, “Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites,” Int. J. Hydrogen Energy 34(7), 2918–2924 (2009).
[CrossRef]

A. Zgraggen, P. Haueter, D. Trommer, M. Romero, J. Dejesus, and A. Steinfeld, “Hydrogen Production by Steam-Gasification of Petroleum Coke using Concentrated Solar Power − II. Reactor Design, Testing, and Modeling,” Int. J. Hydrogen Energy 31(6), 797–811 (2006).
[CrossRef]

Sánchez, M.

areF. Fresno, R. Fernández-Saavedra, M. Belén Gómez-Mancebo, A. Vidal, M. Sánchez, M. Isabel Rucandio, A. J. Quejido, and M. Romero, “Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites,” Int. J. Hydrogen Energy 34(7), 2918–2924 (2009).
[CrossRef]

Sattler, C.

M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006).
[CrossRef]

Schunk, L.

L. Schunk, W. Lipinski, and A. Steinfeld, “Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO – Experimental validation at 10 kW and scale-up to 1 MW,” Chem. Eng. J. 150(2-3), 502–508 (2009).
[CrossRef]

Schunk, L. O.

L. O. Schunk, P. Haeberling, S. Wepf, D. Wuillemin, A. Meier, and A. Steinfeld, “A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide,” J. Sol. Energy Eng. 130(2), 021009 (2008).
[CrossRef]

Service, R. F.

R. F. Service, “Solar fuels. Biomass fuel starts to see the light,” Science 326(5959), 1474 (2009).
[CrossRef] [PubMed]

Siegel, N. P.

M. D. Allendorf, R. B. Diver, N. P. Siegel, and J. E. Miller, “Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials,” Energy Fuels 22(6), 4115–4124 (2008).
[CrossRef]

J. E. Miller, M. D. Allendorf, R. B. Diver, L. R. Evans, N. P. Siegel, and J. N. Stuecker, “Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles,” J. Mater. Sci. 43(14), 4714–4728 (2008).
[CrossRef]

Stamatiou, A.

P. Loutzenhiser, M. E. Gálvez, I. Hischier, A. Stamatiou, A. Frei, and A. Steinfeld, “CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic analysis,” Energy Fuels 23(5), 2832–2839 (2009).
[CrossRef]

Steele, A.

M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006).
[CrossRef]

Steinfeld, A.

P. Loutzenhiser, M. E. Gálvez, I. Hischier, A. Stamatiou, A. Frei, and A. Steinfeld, “CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic analysis,” Energy Fuels 23(5), 2832–2839 (2009).
[CrossRef]

T. Melchior, N. Piatkowski, and A. Steinfeld, “H2 production by steam-quenching of Zn vapor in a hot-wall aerosol flow reactor,” Chem. Eng. Sci. 64(5), 1095–1101 (2009).
[CrossRef]

T. Melchior, C. Perkins, P. Lichty, A. W. Weimer, and A. Steinfeld, “Solar-driven biochar gasification in a particle-flow reactor,” Chem. Eng. Process. 48(8), 1279–1287 (2009).

N. Piatkowski, C. Wieckert, and A. Steinfeld, “Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks,” Fuel Process. Technol. 90(3), 360–366 (2009).
[CrossRef]

A. Zgraggen and A. Steinfeld, “Heat and mass transfer analysis of a suspension of reacting particles subjected to concentrated solar radiation – Application to the steam-gasification of carbonaceous materials,” Int. J. Heat Mass Transfer 52(1-2), 385–395 (2009).
[CrossRef]

L. Schunk, W. Lipinski, and A. Steinfeld, “Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO – Experimental validation at 10 kW and scale-up to 1 MW,” Chem. Eng. J. 150(2-3), 502–508 (2009).
[CrossRef]

G. Maag, G. Zanganeh, and A. Steinfeld, “Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon,” Int. J. Hydrogen Energy 34(18), 7676–7685 (2009).
[CrossRef]

N. Piatkowski and A. Steinfeld, “Solar-driven coal gasification in a thermally irradiated packed-bed reactor,” Energy Fuels 22(3), 2043–2052 (2008).
[CrossRef]

L. O. Schunk, P. Haeberling, S. Wepf, D. Wuillemin, A. Meier, and A. Steinfeld, “A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide,” J. Sol. Energy Eng. 130(2), 021009 (2008).
[CrossRef]

P. Zedtwitz, J. Petrasch, D. Trommer, and A. Steinfeld, “Solar Hydrogen Production via the Solar Thermal Decarbonization of Fossil Fuels,” Sol. Energy 80(10), 1333–1337 (2006).
[CrossRef]

A. Zgraggen, P. Haueter, D. Trommer, M. Romero, J. Dejesus, and A. Steinfeld, “Hydrogen Production by Steam-Gasification of Petroleum Coke using Concentrated Solar Power − II. Reactor Design, Testing, and Modeling,” Int. J. Hydrogen Energy 31(6), 797–811 (2006).
[CrossRef]

P. von Zedwitz and A. Steinfeld, “Steam-Gasification of Coal in a Fluidized-Bed/Packed-Bed Reactor Exposed to Concentrated Thermal Radiation - Modeling and Experimental Validation,” Ind. Eng. Chem. Res. 44(11), 3852–3861 (2005).
[CrossRef]

A. Steinfeld, “Solar Thermochemical Production of Hydrogen - A Review,” Sol. Energy 78(5), 603–615 (2005).
[CrossRef]

R. Mueller, P. von Zedtwitz, A. Wokaun, and A. Steinfeld, “Kinetic investigation on steam gasification of charcoal under direct high flux irradiation,” Chem. Eng. Sci. 58(22), 5111–5119 (2003).
[CrossRef]

A. Steinfeld, “Solar Hydrogen Production via a 2-step Water-Splitting Thermochemical Cycle based on Zn/ZnO Redox Reactions,” Int. J. Hydrogen Energy 27(6), 611–619 (2002).
[CrossRef]

Stobbe, P.

M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006).
[CrossRef]

Stolzenburg, M.

T. Abu Hamed, J. H. Davidson, and M. Stolzenburg, “Hydrolysis of evaporated Zn in a hot wall flow reaction,” J. Sol. Energy Eng. 130(4), 041010–041011 (2008).
[CrossRef]

Stuecker, J. N.

J. E. Miller, M. D. Allendorf, R. B. Diver, L. R. Evans, N. P. Siegel, and J. N. Stuecker, “Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles,” J. Mater. Sci. 43(14), 4714–4728 (2008).
[CrossRef]

Tamaura, Y.

H. Ishihara, H. Kaneko, N. Hasegawa, and Y. Tamaura, “Two-step water-splitting at 1273–1623 K using yttria-stabilized zirconia-iron oxide solid solution via co-precipitation and solid-state reaction,” Energy 33(12), 1788–1793 (2008).
[CrossRef]

Trommer, D.

A. Zgraggen, P. Haueter, D. Trommer, M. Romero, J. Dejesus, and A. Steinfeld, “Hydrogen Production by Steam-Gasification of Petroleum Coke using Concentrated Solar Power − II. Reactor Design, Testing, and Modeling,” Int. J. Hydrogen Energy 31(6), 797–811 (2006).
[CrossRef]

P. Zedtwitz, J. Petrasch, D. Trommer, and A. Steinfeld, “Solar Hydrogen Production via the Solar Thermal Decarbonization of Fossil Fuels,” Sol. Energy 80(10), 1333–1337 (2006).
[CrossRef]

Vidal, A.

areF. Fresno, R. Fernández-Saavedra, M. Belén Gómez-Mancebo, A. Vidal, M. Sánchez, M. Isabel Rucandio, A. J. Quejido, and M. Romero, “Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites,” Int. J. Hydrogen Energy 34(7), 2918–2924 (2009).
[CrossRef]

von Zedtwitz, P.

R. Mueller, P. von Zedtwitz, A. Wokaun, and A. Steinfeld, “Kinetic investigation on steam gasification of charcoal under direct high flux irradiation,” Chem. Eng. Sci. 58(22), 5111–5119 (2003).
[CrossRef]

von Zedwitz, P.

P. von Zedwitz and A. Steinfeld, “Steam-Gasification of Coal in a Fluidized-Bed/Packed-Bed Reactor Exposed to Concentrated Thermal Radiation - Modeling and Experimental Validation,” Ind. Eng. Chem. Res. 44(11), 3852–3861 (2005).
[CrossRef]

Weimer, A. W.

P. Lichty, C. Perkins, B. Woodruff, C. Bingham, and A. W. Weimer, “Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor,” J. Sol. Energy Eng. 132(1), 011012 (2010).
[CrossRef]

T. Melchior, C. Perkins, P. Lichty, A. W. Weimer, and A. Steinfeld, “Solar-driven biochar gasification in a particle-flow reactor,” Chem. Eng. Process. 48(8), 1279–1287 (2009).

H. Funke, H. Diaz, X. Liang, C. Carney, A. W. Weimer, and P. Li, “Hydrogen generation by hydrolysis of zinc powder aerosol,” Int. J. Hydrogen Energy 33(4), 1127–1134 (2008).
[CrossRef]

C. Perkins and A. W. Weimer, “Likely near-term solar-thermal water splitting technologies,” Int. J. Hydrogen Energy 29(15), 1587–1599 (2004).
[CrossRef]

J. Martinek, M. Channel, A. Lewandowski, and A. W. Weimer, “Considerations for the Design of Solar-thermal Chemical Processes,” J. Sol. Energy Eng. in press.

Wepf, S.

L. O. Schunk, P. Haeberling, S. Wepf, D. Wuillemin, A. Meier, and A. Steinfeld, “A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide,” J. Sol. Energy Eng. 130(2), 021009 (2008).
[CrossRef]

Wieckert, C.

N. Piatkowski, C. Wieckert, and A. Steinfeld, “Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks,” Fuel Process. Technol. 90(3), 360–366 (2009).
[CrossRef]

Wokaun, A.

R. Mueller, P. von Zedtwitz, A. Wokaun, and A. Steinfeld, “Kinetic investigation on steam gasification of charcoal under direct high flux irradiation,” Chem. Eng. Sci. 58(22), 5111–5119 (2003).
[CrossRef]

Woodruff, B.

P. Lichty, C. Perkins, B. Woodruff, C. Bingham, and A. W. Weimer, “Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor,” J. Sol. Energy Eng. 132(1), 011012 (2010).
[CrossRef]

Wuillemin, D.

L. O. Schunk, P. Haeberling, S. Wepf, D. Wuillemin, A. Meier, and A. Steinfeld, “A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide,” J. Sol. Energy Eng. 130(2), 021009 (2008).
[CrossRef]

Zanganeh, G.

G. Maag, G. Zanganeh, and A. Steinfeld, “Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon,” Int. J. Hydrogen Energy 34(18), 7676–7685 (2009).
[CrossRef]

Zaspalis, V. T.

M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006).
[CrossRef]

Zedtwitz, P.

P. Zedtwitz, J. Petrasch, D. Trommer, and A. Steinfeld, “Solar Hydrogen Production via the Solar Thermal Decarbonization of Fossil Fuels,” Sol. Energy 80(10), 1333–1337 (2006).
[CrossRef]

Zgraggen, A.

A. Zgraggen and A. Steinfeld, “Heat and mass transfer analysis of a suspension of reacting particles subjected to concentrated solar radiation – Application to the steam-gasification of carbonaceous materials,” Int. J. Heat Mass Transfer 52(1-2), 385–395 (2009).
[CrossRef]

A. Zgraggen, P. Haueter, D. Trommer, M. Romero, J. Dejesus, and A. Steinfeld, “Hydrogen Production by Steam-Gasification of Petroleum Coke using Concentrated Solar Power − II. Reactor Design, Testing, and Modeling,” Int. J. Hydrogen Energy 31(6), 797–811 (2006).
[CrossRef]

Chem. Eng. J.

L. Schunk, W. Lipinski, and A. Steinfeld, “Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO – Experimental validation at 10 kW and scale-up to 1 MW,” Chem. Eng. J. 150(2-3), 502–508 (2009).
[CrossRef]

Chem. Eng. Process.

T. Melchior, C. Perkins, P. Lichty, A. W. Weimer, and A. Steinfeld, “Solar-driven biochar gasification in a particle-flow reactor,” Chem. Eng. Process. 48(8), 1279–1287 (2009).

Chem. Eng. Sci.

R. Mueller, P. von Zedtwitz, A. Wokaun, and A. Steinfeld, “Kinetic investigation on steam gasification of charcoal under direct high flux irradiation,” Chem. Eng. Sci. 58(22), 5111–5119 (2003).
[CrossRef]

T. Melchior, N. Piatkowski, and A. Steinfeld, “H2 production by steam-quenching of Zn vapor in a hot-wall aerosol flow reactor,” Chem. Eng. Sci. 64(5), 1095–1101 (2009).
[CrossRef]

ChemSusChem

W. C. Chueh and S. M. Haile, “Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H(2)O and CO(2),” ChemSusChem 2(8), 735–739 (2009).
[CrossRef] [PubMed]

Energy

H. Ishihara, H. Kaneko, N. Hasegawa, and Y. Tamaura, “Two-step water-splitting at 1273–1623 K using yttria-stabilized zirconia-iron oxide solid solution via co-precipitation and solid-state reaction,” Energy 33(12), 1788–1793 (2008).
[CrossRef]

P. Charvin, S. Abanades, G. Flamant, and F. Lemort, “Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production,” Energy 32(7), 1124–1133 (2007).
[CrossRef]

Energy Fuels

P. Loutzenhiser, M. E. Gálvez, I. Hischier, A. Stamatiou, A. Frei, and A. Steinfeld, “CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic analysis,” Energy Fuels 23(5), 2832–2839 (2009).
[CrossRef]

M. D. Allendorf, R. B. Diver, N. P. Siegel, and J. E. Miller, “Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials,” Energy Fuels 22(6), 4115–4124 (2008).
[CrossRef]

N. Piatkowski and A. Steinfeld, “Solar-driven coal gasification in a thermally irradiated packed-bed reactor,” Energy Fuels 22(3), 2043–2052 (2008).
[CrossRef]

Fuel Process. Technol.

N. Piatkowski, C. Wieckert, and A. Steinfeld, “Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks,” Fuel Process. Technol. 90(3), 360–366 (2009).
[CrossRef]

Ind. Eng. Chem. Res.

P. von Zedwitz and A. Steinfeld, “Steam-Gasification of Coal in a Fluidized-Bed/Packed-Bed Reactor Exposed to Concentrated Thermal Radiation - Modeling and Experimental Validation,” Ind. Eng. Chem. Res. 44(11), 3852–3861 (2005).
[CrossRef]

Int. J. Heat Mass Transfer

A. Zgraggen and A. Steinfeld, “Heat and mass transfer analysis of a suspension of reacting particles subjected to concentrated solar radiation – Application to the steam-gasification of carbonaceous materials,” Int. J. Heat Mass Transfer 52(1-2), 385–395 (2009).
[CrossRef]

Int. J. Hydrogen Energy

G. Maag, G. Zanganeh, and A. Steinfeld, “Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon,” Int. J. Hydrogen Energy 34(18), 7676–7685 (2009).
[CrossRef]

A. Zgraggen, P. Haueter, D. Trommer, M. Romero, J. Dejesus, and A. Steinfeld, “Hydrogen Production by Steam-Gasification of Petroleum Coke using Concentrated Solar Power − II. Reactor Design, Testing, and Modeling,” Int. J. Hydrogen Energy 31(6), 797–811 (2006).
[CrossRef]

areF. Fresno, R. Fernández-Saavedra, M. Belén Gómez-Mancebo, A. Vidal, M. Sánchez, M. Isabel Rucandio, A. J. Quejido, and M. Romero, “Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites,” Int. J. Hydrogen Energy 34(7), 2918–2924 (2009).
[CrossRef]

A. Steinfeld, “Solar Hydrogen Production via a 2-step Water-Splitting Thermochemical Cycle based on Zn/ZnO Redox Reactions,” Int. J. Hydrogen Energy 27(6), 611–619 (2002).
[CrossRef]

C. Perkins and A. W. Weimer, “Likely near-term solar-thermal water splitting technologies,” Int. J. Hydrogen Energy 29(15), 1587–1599 (2004).
[CrossRef]

H. Funke, H. Diaz, X. Liang, C. Carney, A. W. Weimer, and P. Li, “Hydrogen generation by hydrolysis of zinc powder aerosol,” Int. J. Hydrogen Energy 33(4), 1127–1134 (2008).
[CrossRef]

J. Mater. Sci.

J. E. Miller, M. D. Allendorf, R. B. Diver, L. R. Evans, N. P. Siegel, and J. N. Stuecker, “Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles,” J. Mater. Sci. 43(14), 4714–4728 (2008).
[CrossRef]

J. Sol. Energy Eng.

T. Abu Hamed, J. H. Davidson, and M. Stolzenburg, “Hydrolysis of evaporated Zn in a hot wall flow reaction,” J. Sol. Energy Eng. 130(4), 041010–041011 (2008).
[CrossRef]

L. O. Schunk, P. Haeberling, S. Wepf, D. Wuillemin, A. Meier, and A. Steinfeld, “A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide,” J. Sol. Energy Eng. 130(2), 021009 (2008).
[CrossRef]

M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006).
[CrossRef]

J. Martinek, M. Channel, A. Lewandowski, and A. W. Weimer, “Considerations for the Design of Solar-thermal Chemical Processes,” J. Sol. Energy Eng. in press.

P. Lichty, C. Perkins, B. Woodruff, C. Bingham, and A. W. Weimer, “Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor,” J. Sol. Energy Eng. 132(1), 011012 (2010).
[CrossRef]

Science

R. F. Service, “Solar fuels. Biomass fuel starts to see the light,” Science 326(5959), 1474 (2009).
[CrossRef] [PubMed]

E. A. Fletcher and R. L. Moen, “Hydrogen- and Oxygen from Water,” Science 197(4308), 1050–1056 (1977).
[CrossRef] [PubMed]

Sol. Energy

A. Steinfeld, “Solar Thermochemical Production of Hydrogen - A Review,” Sol. Energy 78(5), 603–615 (2005).
[CrossRef]

N. Gokon, H. Murayama, A. Nagasaki, and T. Kodama, “Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices,” Sol. Energy 83(4), 527–537 (2009).
[CrossRef]

P. Zedtwitz, J. Petrasch, D. Trommer, and A. Steinfeld, “Solar Hydrogen Production via the Solar Thermal Decarbonization of Fossil Fuels,” Sol. Energy 80(10), 1333–1337 (2006).
[CrossRef]

Other

S. Moeller, R. Buck, R. Tamme, M. Epstein, D. Liebermann, M. Moshe, U. Fisher, A. Rotstein, and C. Sugarmen, “Solar production of syngas for electricity generation, SOLASYS project test-phase”, In, Proceedings of the 11th SolarPACES Int. Symposium on Concentrated Solar Power and Chemical Energy Technologies, Steinfeld A. (Ed.), Zurich, Switzerland, 231–237 (2002).

A. Steinfeld, and R. Palumbo, “Solar Thermochemical Process Technology, Encyclopedia of Physical Science and Technology”, R. A. Meyers Ed., Academic Press 15, 237–256 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Variation of the ideal solar-to-fuel efficiency as a function of the operating temperature TH , for a blackbody cavity-receiver converting concentrated solar energy into chemical energy. The mean solar flux concentration is the parameter: 1000,...40000 [1].

Fig. 2
Fig. 2

Schematic of an ideal cyclic process for calculating the maximum solar-to-fuel energy conversion efficiency of the 2-step water-splitting cycle using ZnO/Zn redox reactions [1].

Fig. 3
Fig. 3

Five thermochemical routes for solar fuels production using concentrated solar radiation as the energy source of high-temperature process heat [4].

Fig. 4
Fig. 4

Scheme of a 2-step solar thermochemical cycle based on metal oxide redox reactions. Here, MxOy denotes a metal oxide, and M the corresponding metal or lower-valence metal oxide. In the first, endothermic, solar step, MxOy is thermally dissociated into the metal or lower-valence metal oxide M and oxygen. Concentrated solar radiation is the energy source for the required high-temperature process heat. In the second, exothermic, non-solar step, M reacts with water to produce hydrogen. The resulting metal oxide is then recycled back to the first step.

Fig. 5
Fig. 5

Scheme of the solar reactor configuration for the thermal dissociation of ZnO, as part of a 2-step water-splitting thermochemical cycle based on ZnO/Zn redox reactions. It consists of a windowed rotating cavity-receiver lined with ZnO particles. With this arrangement, ZnO is directly exposed to high-flux solar irradiation and serves simultaneously the functions of radiant absorber, thermal insulator, and chemical reactant [18].

Fig. 6
Fig. 6

Scheme of the solar chemical reactor for the co-production C and H2 by thermal decomposition of CH4. It consist of a continuous flow of CH4 laden with μm-sized carbon black particles, confined to a cavity receiver and directly exposed to concentrated solar irradiation. The carbon particles fed serve the functions of radiant absorbers and nucleation sites for the heterogeneous reaction [22].

Fig. 7
Fig. 7

Packed-bed solar reactor configuration for the steam-gasification of carbonaceous materials. It consists of two cavities separated by a radiant emitter plate, with the upper one serving as the solar absorber and the lower one containing the reacting packed bed that shrinks as the reaction progresses [30,31].

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

C ˜ = Q a p e r t u r e / I A a p e r t u r e
C ˜ = Q a p e r t u r e / I A a p e r t u r e .
η a b s o r p t i o n = 1 ( σ T 4 / I C ˜ ) .
η s o l a r t o f u e l = n ˙ Δ G | 298 K Q s o l a r      
η s olar-to-fuel,   ideal = η a b s o r p t i o n η C a r n o t = [ 1 ( σ T H 4 I C ) ] × [ 1 ( T L T H ) ]
T s t a g n a t i o n = ( I C ˜ / σ ) 0.25 .
η o v e r a l l , i d e a l / T = 0.
T o p t 5 ( 0.75 T L ) T o p t 4 ( α e f f T L I C ˜ / 4 ε e f f σ ) = 0.
1st step  ( solar ZnO decomposition ) Z n O Z n + 0.5 O 2
2nd step  ( non solar Zn hydrolysis ) Z n + H 2 O Z n O + H 2
Q r e a c t o r , n e t = n ˙ Δ H | Z n O ( s )     @     298 K               Zn(g) + 0.5 O 2     @     2000 K = 557  kJ/mol
Q q u e n c h =     n ˙ Δ H |   Zn(g) + 0.5 O 2     @     2000 K               Zn(s) + 0.5 O 2     @     298 K .   =    2 0 9 kJ / mol
Q h y d r o l y s e r = n ˙ Δ H | Z n + H 2 O @ 298 K         Z n O + H 2 @ 298 K .   =    62 kJ / mol
W F . C . = n ˙ Δ G | H 2 + 0.5 O 2 @ 298 K         H 2 O @ 298 K =  237 kJ / mol
Q F . C . = T L × n ˙ Δ S | H 2 + 0.5 O 2 @ 298 K         H 2 O @ 298 K =    49 kJ / mol
η solar-to-fuel = W F . C . Q s o l a r = 35 %
η solar-to-fuel = W F . C . Q s o l a r + H H V reactants
M x F e 3 x O 4 +   s o l a r   t h e r m a l   e n e r g y x M O + ( 3 x ) F e O + 0.5   O 2
x M O + ( 3 x ) F e O + H 2 O M x F e 3 x O 4 + 2 H 2
N i F e 2 O 4 ( N i O ) ( 1.2 F e O ) ( 0.4 F e 2 O 3 ) + 0.3 O 2
( N i O ) ( 1.2 F e O ) ( 0.4 F e 2 O 3 ) + 0.6   H 2 O N i F e 2 O 4 + 0.6   H 2
C x H y = x C ( g r ) + y 2 H 2
C x H y O z + ( x z ) H 2 O = ( y 2 + x z ) · H 2 + x C O

Metrics