Abstract

Yb2+ and Yb3+ co-activated luminescent material that can cut one photon in ultraviolet and visible region into multi NIR photons could be used as a downconversion luminescent convertor in front of crystalline silicon solar cell panels to reduce thermalization loss of the solar cell. After a direct excitation of Yb2+ ions, an intense Yb3+ luminescence is observed based on a cooperative energy transfer process. The energy transfer process is discussed according to the dependence of Yb3+ luminescence intensity on the excitation power and the ambient temperature.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2(2), 105–109 (2008).
    [CrossRef]
  2. B. van der Zwaan and A. Rabl, “Prospects for PV: a learning curve analysis,” Sol. Energy 74(1), 19–31 (2003).
    [CrossRef]
  3. C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaouic, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Solar Energy Solar Cells. 91(4), 238–249 (2007).
    [CrossRef]
  4. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 1 (2009).
    [CrossRef]
  5. L. Aarts, B. M. van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4:Er,Yb,” J. Appl. Phys. 106(2), 023522 (2009).
    [CrossRef]
  6. S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
    [CrossRef] [PubMed]
  7. X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, and J. Qiu, “Cooperative downconversion in Yb3+/-RE3+ (RE=Tm or Pr) codoped lanthanum borogermanate glasses,” Opt. Lett. 33(23), 2858–2860 (2008).
    [CrossRef] [PubMed]
  8. Q. Zhang, G. Yang, and Z. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
    [CrossRef]
  9. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
    [CrossRef]
  10. D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd(3+)-Yb(3+) couple,” Opt. Lett. 35(2), 220–222 (2010).
    [CrossRef] [PubMed]
  11. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
    [CrossRef] [PubMed]
  12. D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
    [CrossRef]
  13. S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
    [CrossRef]
  14. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
    [CrossRef] [PubMed]
  15. W. Hörkner, “Zur kristallstruktur von CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983 (1976).
    [CrossRef]
  16. S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc. 28(4), 747–756 (2008).
    [CrossRef]
  17. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomicdistances in halides and chalcogenides,” Acta Crystallogr. 32(5), 751–767 (1976).
    [CrossRef]
  18. J. Oliva, E. De la Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3: Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
    [CrossRef]
  19. G. Blasse, and B. Grabmaier, Luminescent Materials, Springer-Verlag, 1994.
  20. C. Duan and P. A. Tanner, “Simulation of 4f-5d transitions of Yb2+ in potassium and sodium halides,” J. Phys. Condens. Matter 20(21), 215228 (2008).
    [CrossRef]
  21. M. Engholm, L. Norin, and D. Åberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32(22), 3352–3354 (2007).
    [CrossRef] [PubMed]
  22. S. Lizzo, E. P. Klein Nagelvoort, R. Ersens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
    [CrossRef]
  23. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
    [CrossRef]

2010

2009

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 1 (2009).
[CrossRef]

L. Aarts, B. M. van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4:Er,Yb,” J. Appl. Phys. 106(2), 023522 (2009).
[CrossRef]

2008

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, and J. Qiu, “Cooperative downconversion in Yb3+/-RE3+ (RE=Tm or Pr) codoped lanthanum borogermanate glasses,” Opt. Lett. 33(23), 2858–2860 (2008).
[CrossRef] [PubMed]

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2(2), 105–109 (2008).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc. 28(4), 747–756 (2008).
[CrossRef]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
[CrossRef] [PubMed]

J. Oliva, E. De la Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3: Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
[CrossRef]

C. Duan and P. A. Tanner, “Simulation of 4f-5d transitions of Yb2+ in potassium and sodium halides,” J. Phys. Condens. Matter 20(21), 215228 (2008).
[CrossRef]

2007

M. Engholm, L. Norin, and D. Åberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32(22), 3352–3354 (2007).
[CrossRef] [PubMed]

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaouic, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Solar Energy Solar Cells. 91(4), 238–249 (2007).
[CrossRef]

Q. Zhang, G. Yang, and Z. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[CrossRef]

2003

B. van der Zwaan and A. Rabl, “Prospects for PV: a learning curve analysis,” Sol. Energy 74(1), 19–31 (2003).
[CrossRef]

1997

S. Lizzo, E. P. Klein Nagelvoort, R. Ersens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
[CrossRef]

1976

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomicdistances in halides and chalcogenides,” Acta Crystallogr. 32(5), 751–767 (1976).
[CrossRef]

W. Hörkner, “Zur kristallstruktur von CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983 (1976).
[CrossRef]

1970

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[CrossRef]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 1 (2009).
[CrossRef]

L. Aarts, B. M. van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4:Er,Yb,” J. Appl. Phys. 106(2), 023522 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Åberg, D.

Andrei, C. M.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc. 28(4), 747–756 (2008).
[CrossRef]

Ángeles-Chavez, C.

J. Oliva, E. De la Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3: Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
[CrossRef]

Arkhipov, V.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaouic, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Solar Energy Solar Cells. 91(4), 238–249 (2007).
[CrossRef]

Beaucarne, G.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaouic, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Solar Energy Solar Cells. 91(4), 238–249 (2007).
[CrossRef]

Blasse, G.

S. Lizzo, E. P. Klein Nagelvoort, R. Ersens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
[CrossRef]

Botton, G. A.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc. 28(4), 747–756 (2008).
[CrossRef]

Chen, D.

Chen, J.

Chen, J. X.

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

De la Rosa, E.

J. Oliva, E. De la Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3: Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
[CrossRef]

del Canizo, C.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaouic, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Solar Energy Solar Cells. 91(4), 238–249 (2007).
[CrossRef]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[CrossRef]

Diaz-Torres, L. A.

J. Oliva, E. De la Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3: Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
[CrossRef]

Dong, G.

Duan, C.

C. Duan and P. A. Tanner, “Simulation of 4f-5d transitions of Yb2+ in potassium and sodium halides,” J. Phys. Condens. Matter 20(21), 215228 (2008).
[CrossRef]

Engholm, M.

Engqvist, H.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc. 28(4), 747–756 (2008).
[CrossRef]

Ersens, R.

S. Lizzo, E. P. Klein Nagelvoort, R. Ersens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
[CrossRef]

Gregorkiewicz, T.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2(2), 105–109 (2008).
[CrossRef]

Grins, J.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc. 28(4), 747–756 (2008).
[CrossRef]

Hörkner, W.

W. Hörkner, “Zur kristallstruktur von CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983 (1976).
[CrossRef]

Huang, P.

D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd(3+)-Yb(3+) couple,” Opt. Lett. 35(2), 220–222 (2010).
[CrossRef] [PubMed]

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

Iftekhar, S.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc. 28(4), 747–756 (2008).
[CrossRef]

Izeddin, I.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2(2), 105–109 (2008).
[CrossRef]

Jarmar, T.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc. 28(4), 747–756 (2008).
[CrossRef]

Jiang, Z.

Q. Zhang, G. Yang, and Z. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[CrossRef]

Klein Nagelvoort, E. P.

S. Lizzo, E. P. Klein Nagelvoort, R. Ersens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
[CrossRef]

Lakshminarayana, G.

Lin, H.

Liu, X.

Lizzo, S.

S. Lizzo, E. P. Klein Nagelvoort, R. Ersens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
[CrossRef]

Loof, J.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc. 28(4), 747–756 (2008).
[CrossRef]

Luo, J.

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

McCann, M.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaouic, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Solar Energy Solar Cells. 91(4), 238–249 (2007).
[CrossRef]

Meijerink, A.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 1 (2009).
[CrossRef]

L. Aarts, B. M. van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4:Er,Yb,” J. Appl. Phys. 106(2), 023522 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

S. Lizzo, E. P. Klein Nagelvoort, R. Ersens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
[CrossRef]

Miyakawa, T.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[CrossRef]

Norin, L.

Oliva, J.

J. Oliva, E. De la Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3: Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
[CrossRef]

Qiao, Y.

Qiu, J.

Rabl, A.

B. van der Zwaan and A. Rabl, “Prospects for PV: a learning curve analysis,” Sol. Energy 74(1), 19–31 (2003).
[CrossRef]

Salas, P.

J. Oliva, E. De la Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3: Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
[CrossRef]

Shan, Z.

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomicdistances in halides and chalcogenides,” Acta Crystallogr. 32(5), 751–767 (1976).
[CrossRef]

Slaouic, A.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaouic, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Solar Energy Solar Cells. 91(4), 238–249 (2007).
[CrossRef]

Stallinga, P.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2(2), 105–109 (2008).
[CrossRef]

Strumpel, C.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaouic, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Solar Energy Solar Cells. 91(4), 238–249 (2007).
[CrossRef]

Svensson, G.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc. 28(4), 747–756 (2008).
[CrossRef]

Svrcek, V.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaouic, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Solar Energy Solar Cells. 91(4), 238–249 (2007).
[CrossRef]

Tanner, P. A.

C. Duan and P. A. Tanner, “Simulation of 4f-5d transitions of Yb2+ in potassium and sodium halides,” J. Phys. Condens. Matter 20(21), 215228 (2008).
[CrossRef]

Timmerman, D.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2(2), 105–109 (2008).
[CrossRef]

Tobias, I.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaouic, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Solar Energy Solar Cells. 91(4), 238–249 (2007).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 1 (2009).
[CrossRef]

L. Aarts, B. M. van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4:Er,Yb,” J. Appl. Phys. 106(2), 023522 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

van der Zwaan, B.

B. van der Zwaan and A. Rabl, “Prospects for PV: a learning curve analysis,” Sol. Energy 74(1), 19–31 (2003).
[CrossRef]

Wang, Y.

D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd(3+)-Yb(3+) couple,” Opt. Lett. 35(2), 220–222 (2010).
[CrossRef] [PubMed]

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

Weng, F.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

Yang, G.

Q. Zhang, G. Yang, and Z. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[CrossRef]

Yassievich, I. N.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2(2), 105–109 (2008).
[CrossRef]

Ye, S.

Yu, Y.

D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd(3+)-Yb(3+) couple,” Opt. Lett. 35(2), 220–222 (2010).
[CrossRef] [PubMed]

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

Zhang, Q.

Q. Zhang, G. Yang, and Z. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[CrossRef]

Zhu, B.

Acta Crystallogr.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomicdistances in halides and chalcogenides,” Acta Crystallogr. 32(5), 751–767 (1976).
[CrossRef]

Adv. Mater.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 1 (2009).
[CrossRef]

Appl. Phys. Lett.

Q. Zhang, G. Yang, and Z. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007).
[CrossRef]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008).
[CrossRef]

J. Appl. Phys.

J. Oliva, E. De la Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3: Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

L. Aarts, B. M. van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4:Er,Yb,” J. Appl. Phys. 106(2), 023522 (2009).
[CrossRef]

J. Eur. Ceram. Soc.

S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc. 28(4), 747–756 (2008).
[CrossRef]

J. Inorg. Nucl. Chem.

W. Hörkner, “Zur kristallstruktur von CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983 (1976).
[CrossRef]

J. Phys. Chem. C

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[CrossRef]

J. Phys. Chem. Solids

S. Lizzo, E. P. Klein Nagelvoort, R. Ersens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997).
[CrossRef]

J. Phys. Condens. Matter

C. Duan and P. A. Tanner, “Simulation of 4f-5d transitions of Yb2+ in potassium and sodium halides,” J. Phys. Condens. Matter 20(21), 215228 (2008).
[CrossRef]

Nat. Photonics

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2(2), 105–109 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009).
[CrossRef] [PubMed]

Phys. Rev. B

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[CrossRef]

Sol. Energy

B. van der Zwaan and A. Rabl, “Prospects for PV: a learning curve analysis,” Sol. Energy 74(1), 19–31 (2003).
[CrossRef]

Solar Energy Solar Cells.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaouic, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Solar Energy Solar Cells. 91(4), 238–249 (2007).
[CrossRef]

Other

G. Blasse, and B. Grabmaier, Luminescent Materials, Springer-Verlag, 1994.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Powder XRD pattern of sample A and A0. (“*” belong to Ca3Al2O6 impure phase, other diffraction peaks belong to CaAl2O4 phase).

Fig. 2
Fig. 2

Absorption spectra for sample A0, A, B0 and B. Inset: Curves 1 and 2 are the difference absorption spectra between sample B and B0, and between sample A and A0, respectively. Curve 3 is the difference absorption spectrum between curve 2 and curve 1.

Fig. 3
Fig. 3

Emission spectra in the near infrared region under excitation at 310 nm for sample A and A0, and under excitation at 275 nm for sample B (solid lines in red, blue and magenta). Excitation spectra of Yb3+ monitored at 978 nm of sample A (red dashed line) and B (blue dashed line).

Fig. 4
Fig. 4

(a) Power dependence of Yb3+ emission excited by 325 nm laser, (b) Yb3+ emission spectra of sample A for various temperatures.

Fig. 5
Fig. 5

Schematic energy level diagram of Yb2+ and Yb3+ showing two different energy transfer process, (a) three photo cutting process and (b) phonon-assisted two photo cutting process.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

K P A T ( Δ E ) = [ n + 1 n ] N K P A T ( 0 ) e β Δ E

Metrics