Abstract

Mode-locking of semiconductor optical amplifier fiber laser (SOAFL) with 50 fs pulses by extracting the clock of an optical non-return-to-zero (NRZ) data injection is demonstrated. The efficiency of mode-locking in the SOAFL is improved by increasing the seeding power of the large-duty-cycle NRZ data from 3 to 8 dBm into the SOA driven at biased current of 350 mA. After linear dispersion compensation, the mode-locked SOAFL pulsewidth can be further shortened from 20 to 3 ps by increasing the DCF length up to 110 m. By using a booster the EDFA to enlarge the average power of mode-locked SOAFL pulse to 1.3 W, the shortest soliton pulse is occurred after propagating through a 12-m-long SMF. The amplified SOAFL pulse can be compressed to 50 fs after nonlinear compression with its spectral linewidth broadening to 64 nm. Nearly transform-limited time-bandwidth product of 0.436 and the maximum pulse compressing ratio of 400 are reported to date.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yoshida, Y. Kimura, and M. Nakazawa, “Femtosecond erbium-doped fiber lasers and a soliton compression technique,” Jpn. J. Appl. Phys. 32(Part 1, No. 8), 3461–3466 (1993).
    [CrossRef]
  2. J. Nicholson, A. Yablon, P. Westbrook, K. Feder, and M. Yan, “High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,” Opt. Express 12(13), 3025–3034 (2004).
    [CrossRef] [PubMed]
  3. F. Tauser, F. Adler, and A. Leitenstorfer, “Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source,” Opt. Lett. 29(5), 516–518 (2004).
    [CrossRef] [PubMed]
  4. J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photon. Technol. Lett. 17(1), 37–39 (2005).
    [CrossRef]
  5. Y. T. Lin and G.-R. Lin, “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett. 31(10), 1382–1384 (2006).
    [CrossRef] [PubMed]
  6. G.-R. Lin, C. L. Pan, and Y. T. Lin, “Self-Steepening of Prechirped Amplified and Compressed 29-fs Fiber Laser Pulse in Large-Mode-Area Erbium-Doped Fiber Amplifier,” J. Lightwave Technol. 25(11), 3597–3601 (2007).
    [CrossRef]
  7. B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, and J. M. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photon. Technol. Lett. 18(17), 1831–1833 (2006).
    [CrossRef]
  8. D. Y. Tang and L. M. Zhao, “Generation of 47-fs pulses directly from an erbium-doped fiber laser,” Opt. Lett. 32(1), 41–43 (2007).
    [CrossRef]
  9. F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, “Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser,” Opt. Lett. 32(24), 3504–3506 (2007).
    [CrossRef] [PubMed]
  10. Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett. 11(10), 1217–1219 (1999).
    [CrossRef]
  11. K. Igarashi, M. Kishi, and M. Tsuchiya, “Higher-order soliton compression of optical pulses from 5 ps to 20 fs by a 15.1-m-long single-stage step-like dispersion profiled fiber,” Jpn. J. Appl. Phys. 40(Part 1, No. 11), 6426–6429 (2001).
    [CrossRef]
  12. M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
    [CrossRef]
  13. K. S. Abedin and F. Kubota, “Wavelength tunable high-repetition-rate picosecond and femtosecond pulse sources based on highly nonlinear photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1203–1210 (2004).
    [CrossRef]
  14. G.-R. Lin, C. L. Pan, and I. H. Chiu, “Supermode-noise-free eighth-order femtosecond soliton from a backward dark-optical-comb-injection mode-locked semiconductor optical amplifier fiber laser,” Opt. Lett. 31(6), 835–837 (2006).
    [CrossRef] [PubMed]
  15. G.-R. Lin, C. L. Pan, and I. H. Chiu, “110-pJ and 410-fs pulse at 10 GHz generated by single-stage external fiber compression of optically injection-mode-locked semiconductor optical amplifier fiber laser,” IEEE Photon. Technol. Lett. 18(9), 1010–1012 (2006).
    [CrossRef]

2007 (3)

2006 (4)

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, and J. M. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photon. Technol. Lett. 18(17), 1831–1833 (2006).
[CrossRef]

Y. T. Lin and G.-R. Lin, “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett. 31(10), 1382–1384 (2006).
[CrossRef] [PubMed]

G.-R. Lin, C. L. Pan, and I. H. Chiu, “Supermode-noise-free eighth-order femtosecond soliton from a backward dark-optical-comb-injection mode-locked semiconductor optical amplifier fiber laser,” Opt. Lett. 31(6), 835–837 (2006).
[CrossRef] [PubMed]

G.-R. Lin, C. L. Pan, and I. H. Chiu, “110-pJ and 410-fs pulse at 10 GHz generated by single-stage external fiber compression of optically injection-mode-locked semiconductor optical amplifier fiber laser,” IEEE Photon. Technol. Lett. 18(9), 1010–1012 (2006).
[CrossRef]

2005 (1)

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photon. Technol. Lett. 17(1), 37–39 (2005).
[CrossRef]

2004 (3)

2001 (1)

K. Igarashi, M. Kishi, and M. Tsuchiya, “Higher-order soliton compression of optical pulses from 5 ps to 20 fs by a 15.1-m-long single-stage step-like dispersion profiled fiber,” Jpn. J. Appl. Phys. 40(Part 1, No. 11), 6426–6429 (2001).
[CrossRef]

2000 (1)

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
[CrossRef]

1999 (1)

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett. 11(10), 1217–1219 (1999).
[CrossRef]

1993 (1)

E. Yoshida, Y. Kimura, and M. Nakazawa, “Femtosecond erbium-doped fiber lasers and a soliton compression technique,” Jpn. J. Appl. Phys. 32(Part 1, No. 8), 3461–3466 (1993).
[CrossRef]

Abedin, K. S.

K. S. Abedin and F. Kubota, “Wavelength tunable high-repetition-rate picosecond and femtosecond pulse sources based on highly nonlinear photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1203–1210 (2004).
[CrossRef]

Adler, F.

Billet, C.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, and J. M. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photon. Technol. Lett. 18(17), 1831–1833 (2006).
[CrossRef]

Chiu, I. H.

G.-R. Lin, C. L. Pan, and I. H. Chiu, “Supermode-noise-free eighth-order femtosecond soliton from a backward dark-optical-comb-injection mode-locked semiconductor optical amplifier fiber laser,” Opt. Lett. 31(6), 835–837 (2006).
[CrossRef] [PubMed]

G.-R. Lin, C. L. Pan, and I. H. Chiu, “110-pJ and 410-fs pulse at 10 GHz generated by single-stage external fiber compression of optically injection-mode-locked semiconductor optical amplifier fiber laser,” IEEE Photon. Technol. Lett. 18(9), 1010–1012 (2006).
[CrossRef]

Dudley, J. M.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, and J. M. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photon. Technol. Lett. 18(17), 1831–1833 (2006).
[CrossRef]

Feder, K.

Ferriere, R.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, and J. M. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photon. Technol. Lett. 18(17), 1831–1833 (2006).
[CrossRef]

Goto, T.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photon. Technol. Lett. 17(1), 37–39 (2005).
[CrossRef]

Huber, R.

Igarashi, K.

K. Igarashi, M. Kishi, and M. Tsuchiya, “Higher-order soliton compression of optical pulses from 5 ps to 20 fs by a 15.1-m-long single-stage step-like dispersion profiled fiber,” Jpn. J. Appl. Phys. 40(Part 1, No. 11), 6426–6429 (2001).
[CrossRef]

Kibler, B.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, and J. M. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photon. Technol. Lett. 18(17), 1831–1833 (2006).
[CrossRef]

Kimura, Y.

E. Yoshida, Y. Kimura, and M. Nakazawa, “Femtosecond erbium-doped fiber lasers and a soliton compression technique,” Jpn. J. Appl. Phys. 32(Part 1, No. 8), 3461–3466 (1993).
[CrossRef]

Kishi, M.

K. Igarashi, M. Kishi, and M. Tsuchiya, “Higher-order soliton compression of optical pulses from 5 ps to 20 fs by a 15.1-m-long single-stage step-like dispersion profiled fiber,” Jpn. J. Appl. Phys. 40(Part 1, No. 11), 6426–6429 (2001).
[CrossRef]

Kubota, F.

K. S. Abedin and F. Kubota, “Wavelength tunable high-repetition-rate picosecond and femtosecond pulse sources based on highly nonlinear photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1203–1210 (2004).
[CrossRef]

Lacourt, P. A.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, and J. M. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photon. Technol. Lett. 18(17), 1831–1833 (2006).
[CrossRef]

Leitenstorfer, A.

Lin, G.-R.

Lin, Y. T.

Matsui, Y.

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett. 11(10), 1217–1219 (1999).
[CrossRef]

Nagai, H.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photon. Technol. Lett. 17(1), 37–39 (2005).
[CrossRef]

Nakazawa, M.

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
[CrossRef]

E. Yoshida, Y. Kimura, and M. Nakazawa, “Femtosecond erbium-doped fiber lasers and a soliton compression technique,” Jpn. J. Appl. Phys. 32(Part 1, No. 8), 3461–3466 (1993).
[CrossRef]

Nicholson, J.

Nishizawa, N.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photon. Technol. Lett. 17(1), 37–39 (2005).
[CrossRef]

Pan, C. L.

Pelusi, M. D.

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett. 11(10), 1217–1219 (1999).
[CrossRef]

Sell, A.

Sotier, F.

Suzuki, A.

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett. 11(10), 1217–1219 (1999).
[CrossRef]

Takayanagi, J.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photon. Technol. Lett. 17(1), 37–39 (2005).
[CrossRef]

Tang, D. Y.

Tauser, F.

Tsuchiya, M.

K. Igarashi, M. Kishi, and M. Tsuchiya, “Higher-order soliton compression of optical pulses from 5 ps to 20 fs by a 15.1-m-long single-stage step-like dispersion profiled fiber,” Jpn. J. Appl. Phys. 40(Part 1, No. 11), 6426–6429 (2001).
[CrossRef]

Westbrook, P.

Yablon, A.

Yan, M.

Yoshida, E.

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
[CrossRef]

E. Yoshida, Y. Kimura, and M. Nakazawa, “Femtosecond erbium-doped fiber lasers and a soliton compression technique,” Jpn. J. Appl. Phys. 32(Part 1, No. 8), 3461–3466 (1993).
[CrossRef]

Yoshida, M.

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photon. Technol. Lett. 17(1), 37–39 (2005).
[CrossRef]

Zhao, L. M.

IEEE J. Sel. Top. Quantum Electron. (1)

K. S. Abedin and F. Kubota, “Wavelength tunable high-repetition-rate picosecond and femtosecond pulse sources based on highly nonlinear photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1203–1210 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
[CrossRef]

G.-R. Lin, C. L. Pan, and I. H. Chiu, “110-pJ and 410-fs pulse at 10 GHz generated by single-stage external fiber compression of optically injection-mode-locked semiconductor optical amplifier fiber laser,” IEEE Photon. Technol. Lett. 18(9), 1010–1012 (2006).
[CrossRef]

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system,” IEEE Photon. Technol. Lett. 17(1), 37–39 (2005).
[CrossRef]

B. Kibler, C. Billet, P. A. Lacourt, R. Ferriere, and J. M. Dudley, “All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons,” IEEE Photon. Technol. Lett. 18(17), 1831–1833 (2006).
[CrossRef]

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett. 11(10), 1217–1219 (1999).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (2)

K. Igarashi, M. Kishi, and M. Tsuchiya, “Higher-order soliton compression of optical pulses from 5 ps to 20 fs by a 15.1-m-long single-stage step-like dispersion profiled fiber,” Jpn. J. Appl. Phys. 40(Part 1, No. 11), 6426–6429 (2001).
[CrossRef]

E. Yoshida, Y. Kimura, and M. Nakazawa, “Femtosecond erbium-doped fiber lasers and a soliton compression technique,” Jpn. J. Appl. Phys. 32(Part 1, No. 8), 3461–3466 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The experimental setup of the SOAFL under optical NRZ injection. FPLD: Fabry-Perot laser diode, Mux/DMux: multiplexer/demultiplexer, DCF: dispersion compensation fiber, EDFA: Erbium doped fiber amplifier, ISO: Isolator, MZM: Mach-Zehnder intensity modulator, OC: optical coupler, PG: pattern generator, RF: RF synthesizer, SMF: single-mode fiber.

Fig. 2
Fig. 2

The shapes of (a) the optical NRZ data stream (b) the recoverd pulsed RZ clock from the SOAFL after optical NRZ injection.

Fig. 3
Fig. 3

(a) The pulsewidth of mode-locking SOAFL at different injection powers. (b) The jitter of mode-locking SOAFL at different injection powers.

Fig. 4
Fig. 4

(a) The pulse peak power and DC level of mode-locking SOAFL at different injection powers. (b) The ratio of pulse peak power to DC level with increasing the injection powers.

Fig. 5
Fig. 5

(a) Mode-locked (black), dispersion compensated (orange), and soliton compressed (red) SOAFL pulses. (b) Mode-locked (black), dispersion compensated (orange), and soliton compressed (red) SOAFL spectra.

Metrics