Abstract

Time-multiplexed optical line-by-line pulse shaping with specific application to rapid update radio-frequency (RF) waveform generation is modeled. The effects of fundamental pulse shaping parameters on generated RF waveforms are numerically analyzed. Experimental and theoretical results are compared and are in excellent agreement.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005).
    [CrossRef] [PubMed]
  2. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [CrossRef]
  3. A. M. Weiner, “Manipulation of ultrashort pulses,” in Ultrafast Optics (Wiley, 2009), pp. 362–421.
  4. J. Ye, and S. T. Cundiff, eds., Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, 2005).
  5. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [CrossRef]
  6. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
    [CrossRef] [PubMed]
  7. V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008).
    [CrossRef] [PubMed]
  8. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
    [CrossRef] [PubMed]
  9. N. K. Fontaine, R. P. Scott, C. Yang, D. J. Geisler, J. P. Heritage, K. Okamoto, and S. J. B. Yoo, “Compact 10 GHz loopback arrayed-waveguide grating for high-fidelity optical arbitrary waveform generation,” Opt. Lett. 33(15), 1714–1716 (2008).
    [CrossRef] [PubMed]
  10. E. Frumker, E. Tal, Y. Silberberg, and D. Majer, “Femtosecond pulse-shape modulation at nanosecond rates,” Opt. Lett. 30(20), 2796–2798 (2005).
    [CrossRef] [PubMed]
  11. T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Towards a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
    [CrossRef]
  12. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
    [CrossRef]
  13. W. Jiang, et al., “A monolithic InP-based photonic integrated circuit for optical arbitrary waveform generation,” in Optical Fiber Conference, Technical Digest (CD) (Optical Society of America, 2008), Paper JThA39.
  14. J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Theory of rapid-update line-by-line pulse shaping,” Opt. Express 16(1), 315–327 (2008).
    [CrossRef] [PubMed]
  15. C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
    [CrossRef] [PubMed]
  16. C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
    [CrossRef]
  17. C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “The impact of optical comb stability on waveforms generated via spectral line-by-line pulse shaping,” Opt. Express 14(26), 13164–13176 (2006).
    [CrossRef] [PubMed]
  18. J. Caraquitena and J. Martí, “Dynamic spectral line-by-line pulse shaping by frequency comb shifting,” Opt. Lett. 34(13), 2084–2086 (2009).
    [CrossRef] [PubMed]
  19. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  20. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  21. D. E. Leaird, Z. Jiang, and A. M. Weiner, “Experimental investigation of security issues in OCDMA: a code-switching scheme,” Electron. Lett. 41(14), 817–819 (2005).
    [CrossRef]
  22. R. P. Scott, N. K. Fontaine, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, “Rapid updating of optical arbitrary waveforms via time-domain multiplexing,” Opt. Lett. 33(10), 1068–1070 (2008).
    [CrossRef] [PubMed]
  23. H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1325–1331 (2000).
    [CrossRef]
  24. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
    [CrossRef]
  25. J. D. McKinney, I. S. Lin, and A. M. Weiner, “Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals,” IEEE Trans. Microw. Theory Tech. 54(12), 4247–4255 (2006).
    [CrossRef]

2010 (1)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

2009 (3)

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
[CrossRef]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[CrossRef]

J. Caraquitena and J. Martí, “Dynamic spectral line-by-line pulse shaping by frequency comb shifting,” Opt. Lett. 34(13), 2084–2086 (2009).
[CrossRef] [PubMed]

2008 (4)

2007 (4)

2006 (2)

J. D. McKinney, I. S. Lin, and A. M. Weiner, “Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals,” IEEE Trans. Microw. Theory Tech. 54(12), 4247–4255 (2006).
[CrossRef]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “The impact of optical comb stability on waveforms generated via spectral line-by-line pulse shaping,” Opt. Express 14(26), 13164–13176 (2006).
[CrossRef] [PubMed]

2005 (4)

2002 (1)

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Towards a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[CrossRef]

2000 (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1325–1331 (2000).
[CrossRef]

1978 (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[CrossRef]

Abeles, J. H.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Towards a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[CrossRef]

Cao, J.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Caraquitena, J.

Cundiff, S. T.

Delfyett, P. J.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Towards a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[CrossRef]

DePriest, C. M.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Towards a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[CrossRef]

Fontaine, N. K.

Frumker, E.

Geisler, D. J.

Harris, F. J.

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[CrossRef]

Heritage, J. P.

Huang, C.-B.

Jiang, W.

Jiang, Z.

Karalar, A.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Kobayashi, T.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1325–1331 (2000).
[CrossRef]

Kolner, B. H.

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
[CrossRef]

V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
[CrossRef] [PubMed]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “The impact of optical comb stability on waveforms generated via spectral line-by-line pulse shaping,” Opt. Express 14(26), 13164–13176 (2006).
[CrossRef] [PubMed]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
[CrossRef] [PubMed]

D. E. Leaird, Z. Jiang, and A. M. Weiner, “Experimental investigation of security issues in OCDMA: a code-switching scheme,” Electron. Lett. 41(14), 817–819 (2005).
[CrossRef]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005).
[CrossRef] [PubMed]

Lin, I. S.

J. D. McKinney, I. S. Lin, and A. M. Weiner, “Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals,” IEEE Trans. Microw. Theory Tech. 54(12), 4247–4255 (2006).
[CrossRef]

Majer, D.

Martí, J.

McKinney, J. D.

J. D. McKinney, I. S. Lin, and A. M. Weiner, “Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals,” IEEE Trans. Microw. Theory Tech. 54(12), 4247–4255 (2006).
[CrossRef]

Morimoto, A.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1325–1331 (2000).
[CrossRef]

Murata, H.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1325–1331 (2000).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Okamoto, K.

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Scott, R. P.

Seo, D. S.

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Silberberg, Y.

Supradeepa, V. R.

Tal, E.

Turpin, T.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Towards a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[CrossRef]

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
[CrossRef]

J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Theory of rapid-update line-by-line pulse shaping,” Opt. Express 16(1), 315–327 (2008).
[CrossRef] [PubMed]

V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008).
[CrossRef] [PubMed]

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “The impact of optical comb stability on waveforms generated via spectral line-by-line pulse shaping,” Opt. Express 14(26), 13164–13176 (2006).
[CrossRef] [PubMed]

J. D. McKinney, I. S. Lin, and A. M. Weiner, “Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals,” IEEE Trans. Microw. Theory Tech. 54(12), 4247–4255 (2006).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
[CrossRef] [PubMed]

D. E. Leaird, Z. Jiang, and A. M. Weiner, “Experimental investigation of security issues in OCDMA: a code-switching scheme,” Electron. Lett. 41(14), 817–819 (2005).
[CrossRef]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005).
[CrossRef] [PubMed]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Willits, J. T.

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Yamamoto, S.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1325–1331 (2000).
[CrossRef]

Yang, C.

Yao, J.

Yilmaz, T.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Towards a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[CrossRef]

Yoo, S. J. B.

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Electron. Lett. (1)

D. E. Leaird, Z. Jiang, and A. M. Weiner, “Experimental investigation of security issues in OCDMA: a code-switching scheme,” Electron. Lett. 41(14), 817–819 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1325–1331 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
[CrossRef]

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Towards a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. D. McKinney, I. S. Lin, and A. M. Weiner, “Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals,” IEEE Trans. Microw. Theory Tech. 54(12), 4247–4255 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (3)

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

Proc. IEEE (1)

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83 (1978).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Other (3)

A. M. Weiner, “Manipulation of ultrashort pulses,” in Ultrafast Optics (Wiley, 2009), pp. 362–421.

J. Ye, and S. T. Cundiff, eds., Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, 2005).

W. Jiang, et al., “A monolithic InP-based photonic integrated circuit for optical arbitrary waveform generation,” in Optical Fiber Conference, Technical Digest (CD) (Optical Society of America, 2008), Paper JThA39.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of the time-multiplexed shaper. IM: intensity modulator; Q: data pattern; PM: phase modulator; frep: comb frequency spacing. (b) Calculated PMCW comb for a single CW laser under 16-bit length data pattern. The relative comb spectral phases are labeled.

Fig. 2
Fig. 2

(a) Data pattern Q = [1100] with BW values of infinite, 40 GHz and 12.5 GHz. (b) Data (solid) and inverted data (dot) pattern with BW = 12.5 GHz. The shaded region indicates possible waveform degradation region for time-multiplexing.

Fig. 3
Fig. 3

(a) Mask function (M(x), solid), Gaussian intensity profile (G(x), dash) and the effective filter function (H(ω), dot) for w0 = 130, 85 and 20 μm. (b) Output comb fields after the shaper illustrating spectral leakage. (c) Calculated intensity waveforms for various shaper resolution values with Q = [1111111100000000] and BW = 12.5 GHz. (d) Impulse response function of the corresponding pulse shaper.

Fig. 4
Fig. 4

Time multiplexed waveforms with shaper power extinction ratio ηLCM of (a) infinite, (b) 26 dB, and (c) 20 dB. Q = [11110000], w0 = 85 μm and BW = 12.5 GHz are assumed.

Fig. 5
Fig. 5

Analysis on intensity modulator extinction ratio ηIM for time-multiplexed waveforms. Here Q = [11110000], w0 = 85 μm, ηLCM = 26 dB are assumed. Intensities of (a) λa alone and (b) λb alone are shown, both with ηIM of 13 dB. (c) Intensities of λa alone (dot), λb alone (dash) and two waveforms time-multiplexed (solid) for ηIM of 13 dB. (d) Intensities of λa alone (dot), λb alone (dash) and two waveforms time-multiplexed (solid) for ηIM of 20 dB.

Fig. 6
Fig. 6

Analysis on combined system effects. Time-domain intensities for ideal (solid), real (dash) and worst (dot) systems: (a) without phase control and (c) with one of each comb lines being applied a π phase. (b, d) Corresponding mask functions for the waveforms in cases (a, c), respectively.

Fig. 7
Fig. 7

Schematic of the λb shaped output comb lines for (a) phase control as in Fig. 6(a), 6(b) and (b) for phase control as in Fig. 6(c), 6(d). For clarity, the additional sidebands due to data modulation are ignored. The arrows denote the comb lines while the lengths of the arrows represent the line field strengths.

Fig. 8
Fig. 8

Fittings to experimental data with Q = [1111111100000000]. Time-domain intensity (a) and the electrical current power spectrum (b) for a single CW laser. Time-domain intensity (c) and the electrical current power spectrum (d) for rapidly switched transform-limited pulse and odd pulse. Data are shown in solid lines while calculations are shown in dotted lines or circles. In (b,d), ESA resolution bandwidth is 100 kHz.

Tables (1)

Tables Icon

Table 1 Parameter values for the three investigate systems.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

e a ( t ) = Q ( t ) 2 exp { j [ ω a t + Δ m cos ( ω r e p t ) ] } h a ( t )
e b ( t ) = Q ¯ ( t ) 2 exp { j [ ω b t + Δ m cos ( ω r e p t ) ] } h b ( t )
h i ( t ) = F T 1 { H i ( ω ) } = F T 1 { 2 π w 0 2 d x M i ( x ) G ( x ) ] }
G ( x ) = exp [ 2 ( x α ω ) 2 w 0 2 ]
I ( t ) = i | e i ( t ) | 2

Metrics