Abstract

We report on the generation of impulsive terahertz (THz) radiation with 36 kV/cm vacuum electric field (1.5 mW average thermal power) at 250 kHz repetition rate and a high NIR-to-THz conversion efficiency of 2 × 10-3. This is achieved by photoexciting biased large-area photoconductive emitter with NIR fs pulses of μJ pulse energy. We demonstrate focussing of the THz beam by tailoring the pulse front of the exciting laser beam without any focussing element for the THz beam. A high dynamic range of 104 signal-to-noise is obtained with an amplifier based system.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson, and X.-C. Zhang, “Materials for terahertz science and technology, Nat. Mater. 1,” 26-33 (2002).
  2. G. Klatt, F. Hilser, W. Quiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents”, Opt. Express 18(5), 4939-4947 (2010).
    [CrossRef] [PubMed]
  3. A. Sell, A. Leitenstorfer, and R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm,” Opt. Lett. 33, 2767-2769 (2008).
    [CrossRef] [PubMed]
  4. T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, “Generation of single-cycle THz transients with high electric-field amplitudes,” Opt. Lett. 30, 2805-2807 (2005).
    [CrossRef] [PubMed]
  5. K.-L. Yeh, M. C. Hoffmann, J. Hebling and K. A. Nelson, “Generation of 10 J ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121-1 (2007).
    [CrossRef]
  6. K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567-3570 (2008).
    [CrossRef]
  7. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6-B19 (2008).
    [CrossRef]
  8. M. Jewariya, M. Nagai, and K. Tanaka, “Enhancement of terahertz wave generation by cascaded |(2) processes in LiNbO3,” J. Opt. Soc. Am. B. 26, A101-A106 (2009).
    [CrossRef]
  9. G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter”, Rev. Sci. Instrum. 73, 1715-1719 (2002).
    [CrossRef]
  10. A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, “Optimum excitation conditions for the generation of highelectric-field terahertz radiation from an oscillator-driven photoconductive device,” Opt. Lett. 31, 1546-1548 (2006).
    [CrossRef] [PubMed]
  11. J. Shan, and T. F. Heinz, Terahertz radiation from semiconductors (Springer Verlag, 2004).
  12. G. Matthäus, S. Nolte, Rico Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110-1 (2008).
    [CrossRef]
  13. T. Hattori, K. Egawa, S.-I. Ookuma, and T. Itatani, “Intense terahertz pulses from large-aperture antenna with interdigitated electrodes,” Jpn. J. Appl. Phys. 45, L422-L424 (2006).
    [CrossRef]
  14. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114-1 (2005).
    [CrossRef]
  15. B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886-888 (1990).
    [CrossRef]
  16. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond high-field transport in compound semiconductors,” Phys. Rev. B 61, 16642-16652 (2000).
    [CrossRef]
  17. G. Cho,W. Kütt, and H. Kurz, “Subpicosecond time-resolved coherent-phonon oscillations in GaAs,” Phys. Rev. Lett. 65, 764-766 (1990).
    [CrossRef] [PubMed]
  18. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory,” Appl. Phys. Lett. 74, 1516-1518 (1999).
    [CrossRef]
  19. A. E. Iverson, G. M. Wysin, D. L. Smith, and A. Redondo, “Overshoot in the response of a photoconductor excited by subpicosecond pulses,” Appl. Phys. Lett. 52, 2148-2150 (1988).
    [CrossRef]
  20. J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconductive antennas,” IEEE J. Quantum Electron. 28, 1607-1616 (1992).
    [CrossRef]
  21. Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96-100 (2000).
    [CrossRef]
  22. D. S. Kim, and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117-1 (2006).
    [CrossRef]
  23. J.-H. Son, T. B. Norris, and J. F. Whitaker, “Terahertz electromagnetic pulses as probes for transient velocity overshoot in GaAs and Si,” J. Opt. Soc. Am. B 11, 2519-2527 (1994).
    [CrossRef]
  24. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301-1 (2002).
    [CrossRef]
  25. J. K. Luo, H. Thomas, D. V. Morgan, D. Westwood, and R. H. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199-2204 (1994).
    [CrossRef]

2010 (1)

2009 (1)

M. Jewariya, M. Nagai, and K. Tanaka, “Enhancement of terahertz wave generation by cascaded |(2) processes in LiNbO3,” J. Opt. Soc. Am. B. 26, A101-A106 (2009).
[CrossRef]

2008 (4)

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567-3570 (2008).
[CrossRef]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6-B19 (2008).
[CrossRef]

A. Sell, A. Leitenstorfer, and R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm,” Opt. Lett. 33, 2767-2769 (2008).
[CrossRef] [PubMed]

G. Matthäus, S. Nolte, Rico Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110-1 (2008).
[CrossRef]

2007 (1)

K.-L. Yeh, M. C. Hoffmann, J. Hebling and K. A. Nelson, “Generation of 10 J ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121-1 (2007).
[CrossRef]

2006 (3)

T. Hattori, K. Egawa, S.-I. Ookuma, and T. Itatani, “Intense terahertz pulses from large-aperture antenna with interdigitated electrodes,” Jpn. J. Appl. Phys. 45, L422-L424 (2006).
[CrossRef]

A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, “Optimum excitation conditions for the generation of highelectric-field terahertz radiation from an oscillator-driven photoconductive device,” Opt. Lett. 31, 1546-1548 (2006).
[CrossRef] [PubMed]

D. S. Kim, and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117-1 (2006).
[CrossRef]

2005 (2)

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114-1 (2005).
[CrossRef]

T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, “Generation of single-cycle THz transients with high electric-field amplitudes,” Opt. Lett. 30, 2805-2807 (2005).
[CrossRef] [PubMed]

2002 (3)

B. Ferguson, and X.-C. Zhang, “Materials for terahertz science and technology, Nat. Mater. 1,” 26-33 (2002).

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter”, Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301-1 (2002).
[CrossRef]

2000 (2)

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96-100 (2000).
[CrossRef]

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond high-field transport in compound semiconductors,” Phys. Rev. B 61, 16642-16652 (2000).
[CrossRef]

1999 (1)

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory,” Appl. Phys. Lett. 74, 1516-1518 (1999).
[CrossRef]

1994 (2)

J. K. Luo, H. Thomas, D. V. Morgan, D. Westwood, and R. H. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199-2204 (1994).
[CrossRef]

J.-H. Son, T. B. Norris, and J. F. Whitaker, “Terahertz electromagnetic pulses as probes for transient velocity overshoot in GaAs and Si,” J. Opt. Soc. Am. B 11, 2519-2527 (1994).
[CrossRef]

1992 (1)

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconductive antennas,” IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

1990 (2)

G. Cho,W. Kütt, and H. Kurz, “Subpicosecond time-resolved coherent-phonon oscillations in GaAs,” Phys. Rev. Lett. 65, 764-766 (1990).
[CrossRef] [PubMed]

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886-888 (1990).
[CrossRef]

1988 (1)

A. E. Iverson, G. M. Wysin, D. L. Smith, and A. Redondo, “Overshoot in the response of a photoconductor excited by subpicosecond pulses,” Appl. Phys. Lett. 52, 2148-2150 (1988).
[CrossRef]

Auston, D. H.

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconductive antennas,” IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886-888 (1990).
[CrossRef]

Bartal, B.

Bartel, T.

Bartels, A.

Bastian, G.

Beck, M.

Cho, G.

G. Cho,W. Kütt, and H. Kurz, “Subpicosecond time-resolved coherent-phonon oscillations in GaAs,” Phys. Rev. Lett. 65, 764-766 (1990).
[CrossRef] [PubMed]

Citrin, D. S.

D. S. Kim, and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117-1 (2006).
[CrossRef]

Corchia, A.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301-1 (2002).
[CrossRef]

Darrow, J. T.

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconductive antennas,” IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886-888 (1990).
[CrossRef]

Davies, A. G.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301-1 (2002).
[CrossRef]

Dekorsy, T.

Dreyhaupt, A.

A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, “Optimum excitation conditions for the generation of highelectric-field terahertz radiation from an oscillator-driven photoconductive device,” Opt. Lett. 31, 1546-1548 (2006).
[CrossRef] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114-1 (2005).
[CrossRef]

Egawa, K.

T. Hattori, K. Egawa, S.-I. Ookuma, and T. Itatani, “Intense terahertz pulses from large-aperture antenna with interdigitated electrodes,” Jpn. J. Appl. Phys. 45, L422-L424 (2006).
[CrossRef]

Elsaesser, T.

Faist, J.

Ferguson, B.

B. Ferguson, and X.-C. Zhang, “Materials for terahertz science and technology, Nat. Mater. 1,” 26-33 (2002).

Fischer, M.

Gaal, P.

Gebs, R.

Hattori, T.

T. Hattori, K. Egawa, S.-I. Ookuma, and T. Itatani, “Intense terahertz pulses from large-aperture antenna with interdigitated electrodes,” Jpn. J. Appl. Phys. 45, L422-L424 (2006).
[CrossRef]

Hebling, J.

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6-B19 (2008).
[CrossRef]

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567-3570 (2008).
[CrossRef]

K.-L. Yeh, M. C. Hoffmann, J. Hebling and K. A. Nelson, “Generation of 10 J ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121-1 (2007).
[CrossRef]

Helm, M.

A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, “Optimum excitation conditions for the generation of highelectric-field terahertz radiation from an oscillator-driven photoconductive device,” Opt. Lett. 31, 1546-1548 (2006).
[CrossRef] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114-1 (2005).
[CrossRef]

Hilser, F.

Hoffmann, M. C.

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567-3570 (2008).
[CrossRef]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6-B19 (2008).
[CrossRef]

K.-L. Yeh, M. C. Hoffmann, J. Hebling and K. A. Nelson, “Generation of 10 J ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121-1 (2007).
[CrossRef]

Hu, B. B.

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886-888 (1990).
[CrossRef]

Huber, R.

Hunsche, S.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond high-field transport in compound semiconductors,” Phys. Rev. B 61, 16642-16652 (2000).
[CrossRef]

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory,” Appl. Phys. Lett. 74, 1516-1518 (1999).
[CrossRef]

Huska, K.

Itatani, T.

T. Hattori, K. Egawa, S.-I. Ookuma, and T. Itatani, “Intense terahertz pulses from large-aperture antenna with interdigitated electrodes,” Jpn. J. Appl. Phys. 45, L422-L424 (2006).
[CrossRef]

Iverson, A. E.

A. E. Iverson, G. M. Wysin, D. L. Smith, and A. Redondo, “Overshoot in the response of a photoconductor excited by subpicosecond pulses,” Appl. Phys. Lett. 52, 2148-2150 (1988).
[CrossRef]

Jewariya, M.

M. Jewariya, M. Nagai, and K. Tanaka, “Enhancement of terahertz wave generation by cascaded |(2) processes in LiNbO3,” J. Opt. Soc. Am. B. 26, A101-A106 (2009).
[CrossRef]

Johnston, M. B.

Kim, D. S.

D. S. Kim, and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117-1 (2006).
[CrossRef]

Klatt, G.

Knox, W. H.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond high-field transport in compound semiconductors,” Phys. Rev. B 61, 16642-16652 (2000).
[CrossRef]

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory,” Appl. Phys. Lett. 74, 1516-1518 (1999).
[CrossRef]

Kurz, H.

G. Cho,W. Kütt, and H. Kurz, “Subpicosecond time-resolved coherent-phonon oscillations in GaAs,” Phys. Rev. Lett. 65, 764-766 (1990).
[CrossRef] [PubMed]

Kütt, W.

G. Cho,W. Kütt, and H. Kurz, “Subpicosecond time-resolved coherent-phonon oscillations in GaAs,” Phys. Rev. Lett. 65, 764-766 (1990).
[CrossRef] [PubMed]

Leitenstorfer, A.

A. Sell, A. Leitenstorfer, and R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm,” Opt. Lett. 33, 2767-2769 (2008).
[CrossRef] [PubMed]

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond high-field transport in compound semiconductors,” Phys. Rev. B 61, 16642-16652 (2000).
[CrossRef]

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory,” Appl. Phys. Lett. 74, 1516-1518 (1999).
[CrossRef]

Lemmer, U.

Linfield, E. H.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301-1 (2002).
[CrossRef]

Luo, J. K.

J. K. Luo, H. Thomas, D. V. Morgan, D. Westwood, and R. H. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199-2204 (1994).
[CrossRef]

Matthäus, G.

G. Matthäus, S. Nolte, Rico Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110-1 (2008).
[CrossRef]

Morgan, D. V.

J. K. Luo, H. Thomas, D. V. Morgan, D. Westwood, and R. H. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199-2204 (1994).
[CrossRef]

Morse, J. D.

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconductive antennas,” IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

Nagai, M.

M. Jewariya, M. Nagai, and K. Tanaka, “Enhancement of terahertz wave generation by cascaded |(2) processes in LiNbO3,” J. Opt. Soc. Am. B. 26, A101-A106 (2009).
[CrossRef]

Nelson, K. A.

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567-3570 (2008).
[CrossRef]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6-B19 (2008).
[CrossRef]

K.-L. Yeh, M. C. Hoffmann, J. Hebling and K. A. Nelson, “Generation of 10 J ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121-1 (2007).
[CrossRef]

Nolte, S.

G. Matthäus, S. Nolte, Rico Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110-1 (2008).
[CrossRef]

Norris, T. B.

Nuss, M. C.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond high-field transport in compound semiconductors,” Phys. Rev. B 61, 16642-16652 (2000).
[CrossRef]

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory,” Appl. Phys. Lett. 74, 1516-1518 (1999).
[CrossRef]

Ookuma, S.-I.

T. Hattori, K. Egawa, S.-I. Ookuma, and T. Itatani, “Intense terahertz pulses from large-aperture antenna with interdigitated electrodes,” Jpn. J. Appl. Phys. 45, L422-L424 (2006).
[CrossRef]

Piao, Z.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96-100 (2000).
[CrossRef]

Planken, P. C. M.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter”, Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Quiao, W.

Redondo, A.

A. E. Iverson, G. M. Wysin, D. L. Smith, and A. Redondo, “Overshoot in the response of a photoconductor excited by subpicosecond pulses,” Appl. Phys. Lett. 52, 2148-2150 (1988).
[CrossRef]

Reimann, K.

Rico Hohmuth, S.

G. Matthäus, S. Nolte, Rico Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110-1 (2008).
[CrossRef]

Sakai, K.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96-100 (2000).
[CrossRef]

Schouten, R. N.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter”, Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Sell, A.

Shah, J.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond high-field transport in compound semiconductors,” Phys. Rev. B 61, 16642-16652 (2000).
[CrossRef]

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory,” Appl. Phys. Lett. 74, 1516-1518 (1999).
[CrossRef]

Smith, D. L.

A. E. Iverson, G. M. Wysin, D. L. Smith, and A. Redondo, “Overshoot in the response of a photoconductor excited by subpicosecond pulses,” Appl. Phys. Lett. 52, 2148-2150 (1988).
[CrossRef]

Smith, P. R.

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886-888 (1990).
[CrossRef]

Son, J.-H.

Tanaka, K.

M. Jewariya, M. Nagai, and K. Tanaka, “Enhancement of terahertz wave generation by cascaded |(2) processes in LiNbO3,” J. Opt. Soc. Am. B. 26, A101-A106 (2009).
[CrossRef]

Tani, M.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96-100 (2000).
[CrossRef]

Thomas, H.

J. K. Luo, H. Thomas, D. V. Morgan, D. Westwood, and R. H. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199-2204 (1994).
[CrossRef]

van der Valk, N.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter”, Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Wenckebach, W. Th.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter”, Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Westwood, D.

J. K. Luo, H. Thomas, D. V. Morgan, D. Westwood, and R. H. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199-2204 (1994).
[CrossRef]

Whitaker, J. F.

Whittaker, D. M.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301-1 (2002).
[CrossRef]

Williams, R. H.

J. K. Luo, H. Thomas, D. V. Morgan, D. Westwood, and R. H. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199-2204 (1994).
[CrossRef]

Winnerl, S.

A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, “Optimum excitation conditions for the generation of highelectric-field terahertz radiation from an oscillator-driven photoconductive device,” Opt. Lett. 31, 1546-1548 (2006).
[CrossRef] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114-1 (2005).
[CrossRef]

Woerner, M.

Wysin, G. M.

A. E. Iverson, G. M. Wysin, D. L. Smith, and A. Redondo, “Overshoot in the response of a photoconductor excited by subpicosecond pulses,” Appl. Phys. Lett. 52, 2148-2150 (1988).
[CrossRef]

Yeh, K.-L.

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567-3570 (2008).
[CrossRef]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6-B19 (2008).
[CrossRef]

K.-L. Yeh, M. C. Hoffmann, J. Hebling and K. A. Nelson, “Generation of 10 J ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121-1 (2007).
[CrossRef]

Zhang, X.-C.

B. Ferguson, and X.-C. Zhang, “Materials for terahertz science and technology, Nat. Mater. 1,” 26-33 (2002).

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconductive antennas,” IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886-888 (1990).
[CrossRef]

Zhao, G.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter”, Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Appl. Phys. Lett. (7)

K.-L. Yeh, M. C. Hoffmann, J. Hebling and K. A. Nelson, “Generation of 10 J ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121-1 (2007).
[CrossRef]

G. Matthäus, S. Nolte, Rico Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett. 93, 091110-1 (2008).
[CrossRef]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114-1 (2005).
[CrossRef]

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886-888 (1990).
[CrossRef]

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory,” Appl. Phys. Lett. 74, 1516-1518 (1999).
[CrossRef]

A. E. Iverson, G. M. Wysin, D. L. Smith, and A. Redondo, “Overshoot in the response of a photoconductor excited by subpicosecond pulses,” Appl. Phys. Lett. 52, 2148-2150 (1988).
[CrossRef]

D. S. Kim, and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett. 88, 161117-1 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconductive antennas,” IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Opt. Soc. Am. B. (1)

M. Jewariya, M. Nagai, and K. Tanaka, “Enhancement of terahertz wave generation by cascaded |(2) processes in LiNbO3,” J. Opt. Soc. Am. B. 26, A101-A106 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (2)

T. Hattori, K. Egawa, S.-I. Ookuma, and T. Itatani, “Intense terahertz pulses from large-aperture antenna with interdigitated electrodes,” Jpn. J. Appl. Phys. 45, L422-L424 (2006).
[CrossRef]

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96-100 (2000).
[CrossRef]

Nat. Mater. (1)

B. Ferguson, and X.-C. Zhang, “Materials for terahertz science and technology, Nat. Mater. 1,” 26-33 (2002).

Opt. Commun. (1)

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567-3570 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (2)

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond high-field transport in compound semiconductors,” Phys. Rev. B 61, 16642-16652 (2000).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301-1 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

G. Cho,W. Kütt, and H. Kurz, “Subpicosecond time-resolved coherent-phonon oscillations in GaAs,” Phys. Rev. Lett. 65, 764-766 (1990).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter”, Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Semicond. Sci. Technol. (1)

J. K. Luo, H. Thomas, D. V. Morgan, D. Westwood, and R. H. Williams, “The electrical breakdown properties of GaAs layers grown by molecular beam epitaxy at low temperature,” Semicond. Sci. Technol. 9, 2199-2204 (1994).
[CrossRef]

Other (1)

J. Shan, and T. F. Heinz, Terahertz radiation from semiconductors (Springer Verlag, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Beam splitter plate (BS) divides optical pulse trains from the amplifier in pump and probe beam; Lenses (L1,L2) enlarge the pump spot and lense (L3) focus the beam; Emitter bias voltage U B is modulated at laser repetition rate; Electro-optic crystal (EO), quarter-wave plate (QWP), beam splitter cube (PBS) and two photodiodes (D1,D2) are used to probe THz transients. Note that there is a THz focus at the position of the EO crystal without use of additional optics, i.e. parabolic mirrors.

Fig. 2.
Fig. 2.

The time trace shows the maximum THz electric field detected in the EO crystal equals 17 kV/cm. The magnified part shows oscillations occurring due to absorption and reemission of THz radiation by water vapor. Because of the high SNR the magnified oscillations appear without visible noise. Next to the time trace window the corresponding (normalized) spectral amplitude is shown.

Fig. 3.
Fig. 3.

Maximum THz electric field as a function of excitation fluence and excitation spot size radius (1/e2) on the PC. The dashed lines in the inset correspond to the expected linear dependence in the vicinity of saturation effects. All measurement points were acquired at an acceleration field of 20 kV/cm to reduce additional saturation effects present at high bias electric fields [19].

Fig. 4.
Fig. 4.

Maximum THz electric field as a function of excitation fluence on the PC for different acceleration fields. The range where THz amplitude scales linearly with fluence is significantly extended at higher bias fields. The graph to the right shows a vertical cut of the curves in the left graph at a fixed excitation fluence of 12.4 μJ/cm2. A linear dependence of THz amplitude is observed up to acceleration fields of 40 kV/cm. At higher bias fields saturation of THz emission occurs due to ultra-fast transfer of free carriers into the side-valleys of GaAs [19].

Metrics