Abstract

The SiO2/SiOx/SiO2 strip-loaded waveguide on Si substrate with buried Si nanocrystals (Si-ncs) in SiOx layer is demonstrated to show the Si-nc dependent optical gain. The amplified spontaneous emission (ASE) spectrum at 750-850 nm is observed with central wavelength of 805 nm and 3dB spectral linewidth of 140 nm. The optical net modal gain and loss coefficients of 85.7 cm−1 and 21 cm−1, respectively, are determined from the waveguide length dependent ASE intensity. By attenuating 785-nm laser diode signal to inject the pumped SiO2/SiOx/SiO2 strip-loaded waveguide, a small-signal power gain of 13.5 decibel (dB) is obtained. Increasing the laser diode power shows a significantly reduced power gain with a saturated output power due to the finite density of the optically pumped Si-ncs. The fitting of power-dependent gain with a gain-saturated amplifier model reveals a peak gain of 35 dB and a saturation power of 1.1 nW for the SiO2/SiOx:Si-nc/SiO2/Si strip-loaded waveguide. Similar output saturation is also observed with increasing pumping power. With the presence of optical gain in the optically pumped Si-ncs, the intended application will be the monolithic integration of the Si-nc based optical waveguide amplifier with the other on-board photonic integrated circuits for the future optical interconnect communication.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. T. Canham, “Si quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
    [CrossRef]
  2. Y. Osaka, K. Tsunetomo, F. Toyomura, H. Myoren, and K. Kohno, “Visible photoluminescence from Si microcrystals embedded in SiO2 glass films,” Jpn. J. Appl. Phys. 31(Part 2, No. 3B), L365–L366 (1992).
    [CrossRef]
  3. T. Shimizu-Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75(12), 7779–7783 (1994).
    [CrossRef]
  4. P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66(7), 851–853 (1995).
    [CrossRef]
  5. G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
    [CrossRef]
  6. S. Takeoka, M. Fujii, and S. Hayashi, “Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime,” Phys. Rev. B 62(24), 16820–16825 (2000).
    [CrossRef]
  7. L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburroa, L. Pavesi, F. Priolo, D. Pacifici, G. Franzò, and F. Iacona, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,” Physica E 16(3-4), 297–308 (2003).
    [CrossRef]
  8. L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82(26), 4636–4638 (2003).
    [CrossRef]
  9. G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
    [CrossRef]
  10. G.-R. Lin, C.-J. Lin, and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
    [CrossRef]
  11. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [CrossRef] [PubMed]
  12. M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gösele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96(6), 3164–3171 (2004).
    [CrossRef]
  13. P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27(5), 745–749 (2005).
    [CrossRef]
  14. K. L. Shaklee and R. F. Leheny, “Direct Determination of Optical Gain in Semiconductor Crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
    [CrossRef]
  15. J. Valenta, I. Pelant, and J. Linnros, “Waveguiding effects in the measurement of optical gain in a layer of Si nanocrystals,” Appl. Phys. Lett. 81(8), 1396–1398 (2002).
    [CrossRef]
  16. K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
    [CrossRef]
  17. G. P. Agrawal, Fiber-Optic Communication System, (John Willy & Sons, New York, 1997).

2007

G.-R. Lin, C.-J. Lin, and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

2005

G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
[CrossRef]

P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27(5), 745–749 (2005).
[CrossRef]

K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
[CrossRef]

2004

M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gösele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96(6), 3164–3171 (2004).
[CrossRef]

2003

L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburroa, L. Pavesi, F. Priolo, D. Pacifici, G. Franzò, and F. Iacona, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,” Physica E 16(3-4), 297–308 (2003).
[CrossRef]

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82(26), 4636–4638 (2003).
[CrossRef]

2002

G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[CrossRef]

J. Valenta, I. Pelant, and J. Linnros, “Waveguiding effects in the measurement of optical gain in a layer of Si nanocrystals,” Appl. Phys. Lett. 81(8), 1396–1398 (2002).
[CrossRef]

2000

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

S. Takeoka, M. Fujii, and S. Hayashi, “Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime,” Phys. Rev. B 62(24), 16820–16825 (2000).
[CrossRef]

1995

P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66(7), 851–853 (1995).
[CrossRef]

1994

T. Shimizu-Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75(12), 7779–7783 (1994).
[CrossRef]

1992

Y. Osaka, K. Tsunetomo, F. Toyomura, H. Myoren, and K. Kohno, “Visible photoluminescence from Si microcrystals embedded in SiO2 glass films,” Jpn. J. Appl. Phys. 31(Part 2, No. 3B), L365–L366 (1992).
[CrossRef]

1990

L. T. Canham, “Si quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

1971

K. L. Shaklee and R. F. Leheny, “Direct Determination of Optical Gain in Semiconductor Crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[CrossRef]

Bertoni, S.

P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66(7), 851–853 (1995).
[CrossRef]

Bonoldi, L.

P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66(7), 851–853 (1995).
[CrossRef]

Canham, L. T.

L. T. Canham, “Si quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

Cazzaneli, M.

P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27(5), 745–749 (2005).
[CrossRef]

Cazzanelli, M.

K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
[CrossRef]

M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gösele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96(6), 3164–3171 (2004).
[CrossRef]

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82(26), 4636–4638 (2003).
[CrossRef]

L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburroa, L. Pavesi, F. Priolo, D. Pacifici, G. Franzò, and F. Iacona, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,” Physica E 16(3-4), 297–308 (2003).
[CrossRef]

Cerofolini, G. F.

P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66(7), 851–853 (1995).
[CrossRef]

Chen, H.

P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27(5), 745–749 (2005).
[CrossRef]

Cheylan, S.

K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
[CrossRef]

Chou, L.-J.

G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
[CrossRef]

Chueh, Y.-L.

G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
[CrossRef]

Dal Negro, L.

P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27(5), 745–749 (2005).
[CrossRef]

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82(26), 4636–4638 (2003).
[CrossRef]

L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburroa, L. Pavesi, F. Priolo, D. Pacifici, G. Franzò, and F. Iacona, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,” Physica E 16(3-4), 297–308 (2003).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Daldosso, N.

M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gösele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96(6), 3164–3171 (2004).
[CrossRef]

L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburroa, L. Pavesi, F. Priolo, D. Pacifici, G. Franzò, and F. Iacona, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,” Physica E 16(3-4), 297–308 (2003).
[CrossRef]

Dohnalová, K.

K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
[CrossRef]

Elliman, R. G.

P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27(5), 745–749 (2005).
[CrossRef]

Fauchet, P. M.

P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27(5), 745–749 (2005).
[CrossRef]

Franzò, G.

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82(26), 4636–4638 (2003).
[CrossRef]

L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburroa, L. Pavesi, F. Priolo, D. Pacifici, G. Franzò, and F. Iacona, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,” Physica E 16(3-4), 297–308 (2003).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Fujii, M.

S. Takeoka, M. Fujii, and S. Hayashi, “Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime,” Phys. Rev. B 62(24), 16820–16825 (2000).
[CrossRef]

Fujita, K.

T. Shimizu-Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75(12), 7779–7783 (1994).
[CrossRef]

Fujita, T.

T. Shimizu-Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75(12), 7779–7783 (1994).
[CrossRef]

Gaburroa, Z.

L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburroa, L. Pavesi, F. Priolo, D. Pacifici, G. Franzò, and F. Iacona, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,” Physica E 16(3-4), 297–308 (2003).
[CrossRef]

Ghislotti, G.

P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66(7), 851–853 (1995).
[CrossRef]

Gilliot, P.

K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
[CrossRef]

Gong, J.

G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[CrossRef]

Gösele, U.

M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gösele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96(6), 3164–3171 (2004).
[CrossRef]

Grilli, E.

P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66(7), 851–853 (1995).
[CrossRef]

Guillois, O.

G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[CrossRef]

Guzzi, M.

P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66(7), 851–853 (1995).
[CrossRef]

Hayashi, S.

S. Takeoka, M. Fujii, and S. Hayashi, “Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime,” Phys. Rev. B 62(24), 16820–16825 (2000).
[CrossRef]

Heitmann, J.

M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gösele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96(6), 3164–3171 (2004).
[CrossRef]

Hönerlage, B.

K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
[CrossRef]

Huisken, F.

G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[CrossRef]

Iacona, F.

L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburroa, L. Pavesi, F. Priolo, D. Pacifici, G. Franzò, and F. Iacona, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,” Physica E 16(3-4), 297–308 (2003).
[CrossRef]

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82(26), 4636–4638 (2003).
[CrossRef]

Itoh, N.

T. Shimizu-Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75(12), 7779–7783 (1994).
[CrossRef]

Kohno, K.

Y. Osaka, K. Tsunetomo, F. Toyomura, H. Myoren, and K. Kohno, “Visible photoluminescence from Si microcrystals embedded in SiO2 glass films,” Jpn. J. Appl. Phys. 31(Part 2, No. 3B), L365–L366 (1992).
[CrossRef]

Kuo, H.-C.

G.-R. Lin, C.-J. Lin, and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

Ledoux, G.

G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[CrossRef]

Leheny, R. F.

K. L. Shaklee and R. F. Leheny, “Direct Determination of Optical Gain in Semiconductor Crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[CrossRef]

Likforman, J.-P.

K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
[CrossRef]

Lin, C.-J.

G.-R. Lin, C.-J. Lin, and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
[CrossRef]

Lin, C.-K.

G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
[CrossRef]

Lin, G.-R.

G.-R. Lin, C.-J. Lin, and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
[CrossRef]

Linnros, J.

J. Valenta, I. Pelant, and J. Linnros, “Waveguiding effects in the measurement of optical gain in a layer of Si nanocrystals,” Appl. Phys. Lett. 81(8), 1396–1398 (2002).
[CrossRef]

Luterová, K.

K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
[CrossRef]

Luther-Davies, B.

P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27(5), 745–749 (2005).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Meda, L.

P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66(7), 851–853 (1995).
[CrossRef]

Mutti, P.

P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66(7), 851–853 (1995).
[CrossRef]

Myoren, H.

Y. Osaka, K. Tsunetomo, F. Toyomura, H. Myoren, and K. Kohno, “Visible photoluminescence from Si microcrystals embedded in SiO2 glass films,” Jpn. J. Appl. Phys. 31(Part 2, No. 3B), L365–L366 (1992).
[CrossRef]

Nakao, S.

T. Shimizu-Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75(12), 7779–7783 (1994).
[CrossRef]

Navarro, D.

K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
[CrossRef]

Navarro-Urriós, D.

M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gösele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96(6), 3164–3171 (2004).
[CrossRef]

Osaka, Y.

Y. Osaka, K. Tsunetomo, F. Toyomura, H. Myoren, and K. Kohno, “Visible photoluminescence from Si microcrystals embedded in SiO2 glass films,” Jpn. J. Appl. Phys. 31(Part 2, No. 3B), L365–L366 (1992).
[CrossRef]

Ossicini, S.

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82(26), 4636–4638 (2003).
[CrossRef]

Ostatnický, T.

K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
[CrossRef]

Pacifici, D.

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82(26), 4636–4638 (2003).
[CrossRef]

L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburroa, L. Pavesi, F. Priolo, D. Pacifici, G. Franzò, and F. Iacona, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,” Physica E 16(3-4), 297–308 (2003).
[CrossRef]

Pavesi, L.

P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27(5), 745–749 (2005).
[CrossRef]

K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
[CrossRef]

M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gösele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96(6), 3164–3171 (2004).
[CrossRef]

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82(26), 4636–4638 (2003).
[CrossRef]

L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburroa, L. Pavesi, F. Priolo, D. Pacifici, G. Franzò, and F. Iacona, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,” Physica E 16(3-4), 297–308 (2003).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Pelant, I.

K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
[CrossRef]

J. Valenta, I. Pelant, and J. Linnros, “Waveguiding effects in the measurement of optical gain in a layer of Si nanocrystals,” Appl. Phys. Lett. 81(8), 1396–1398 (2002).
[CrossRef]

Priolo, F.

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82(26), 4636–4638 (2003).
[CrossRef]

L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburroa, L. Pavesi, F. Priolo, D. Pacifici, G. Franzò, and F. Iacona, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,” Physica E 16(3-4), 297–308 (2003).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Reynaud, C.

G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[CrossRef]

Riboli, F.

M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gösele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96(6), 3164–3171 (2004).
[CrossRef]

Ruan, J.

P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27(5), 745–749 (2005).
[CrossRef]

Saitoh, K.

T. Shimizu-Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75(12), 7779–7783 (1994).
[CrossRef]

Samoc, M.

P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27(5), 745–749 (2005).
[CrossRef]

Scholz, R.

M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gösele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96(6), 3164–3171 (2004).
[CrossRef]

Shaklee, K. L.

K. L. Shaklee and R. F. Leheny, “Direct Determination of Optical Gain in Semiconductor Crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[CrossRef]

Shimizu-Iwayama, T.

T. Shimizu-Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75(12), 7779–7783 (1994).
[CrossRef]

Smith, N.

P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27(5), 745–749 (2005).
[CrossRef]

Takeoka, S.

S. Takeoka, M. Fujii, and S. Hayashi, “Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime,” Phys. Rev. B 62(24), 16820–16825 (2000).
[CrossRef]

Toyomura, F.

Y. Osaka, K. Tsunetomo, F. Toyomura, H. Myoren, and K. Kohno, “Visible photoluminescence from Si microcrystals embedded in SiO2 glass films,” Jpn. J. Appl. Phys. 31(Part 2, No. 3B), L365–L366 (1992).
[CrossRef]

Tsunetomo, K.

Y. Osaka, K. Tsunetomo, F. Toyomura, H. Myoren, and K. Kohno, “Visible photoluminescence from Si microcrystals embedded in SiO2 glass films,” Jpn. J. Appl. Phys. 31(Part 2, No. 3B), L365–L366 (1992).
[CrossRef]

Valenta, J.

K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
[CrossRef]

J. Valenta, I. Pelant, and J. Linnros, “Waveguiding effects in the measurement of optical gain in a layer of Si nanocrystals,” Appl. Phys. Lett. 81(8), 1396–1398 (2002).
[CrossRef]

Yi, L. X.

M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gösele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96(6), 3164–3171 (2004).
[CrossRef]

Zacharias, M.

M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gösele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96(6), 3164–3171 (2004).
[CrossRef]

Appl. Phys. Lett.

P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett. 66(7), 851–853 (1995).
[CrossRef]

G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002).
[CrossRef]

L. T. Canham, “Si quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82(26), 4636–4638 (2003).
[CrossRef]

G.-R. Lin, C.-J. Lin, and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007).
[CrossRef]

K. L. Shaklee and R. F. Leheny, “Direct Determination of Optical Gain in Semiconductor Crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[CrossRef]

J. Valenta, I. Pelant, and J. Linnros, “Waveguiding effects in the measurement of optical gain in a layer of Si nanocrystals,” Appl. Phys. Lett. 81(8), 1396–1398 (2002).
[CrossRef]

J. Appl. Phys.

M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gösele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96(6), 3164–3171 (2004).
[CrossRef]

G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97(9), 094306 (2005).
[CrossRef]

T. Shimizu-Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, and N. Itoh, “Visible photoluminescence in Si+-implanted silica glass,” J. Appl. Phys. 75(12), 7779–7783 (1994).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Osaka, K. Tsunetomo, F. Toyomura, H. Myoren, and K. Kohno, “Visible photoluminescence from Si microcrystals embedded in SiO2 glass films,” Jpn. J. Appl. Phys. 31(Part 2, No. 3B), L365–L366 (1992).
[CrossRef]

Nature

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Opt. Mater.

P. M. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. G. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27(5), 745–749 (2005).
[CrossRef]

K. Luterová, M. Cazzanelli, J.-P. Likforman, D. Navarro, J. Valenta, T. Ostatnický, K. Dohnalová, S. Cheylan, P. Gilliot, B. Hönerlage, L. Pavesi, and I. Pelant, “Optical gain in nanocrystalline silicon: comparison of planar waveguide geometry with a non-waveguiding ensemble of nanocrystals,” Opt. Mater. 27(5), 750–755 (2005).
[CrossRef]

Phys. Rev. B

S. Takeoka, M. Fujii, and S. Hayashi, “Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime,” Phys. Rev. B 62(24), 16820–16825 (2000).
[CrossRef]

Physica E

L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburroa, L. Pavesi, F. Priolo, D. Pacifici, G. Franzò, and F. Iacona, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,” Physica E 16(3-4), 297–308 (2003).
[CrossRef]

Other

G. P. Agrawal, Fiber-Optic Communication System, (John Willy & Sons, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The buried Si-nc based SiO2/SiOx:Si-nc/SiO2/Si-substrate strip-loaded waveguide structure. (b) The HRTEM image of Si-rich SiOx film with buried Si-ncs.

Fig. 2
Fig. 2

(a) The propagation loss with different thickness of buffered SiO2 layer by BPM simulation. (b) The simulated contour map of the confined mode in the SiO2/SiOx:Si-nc/SiO2/Si waveguide. (c) The cross-sectional view of the mode amplitude profile confined within the SiOx layer.

Fig. 3
Fig. 3

Experimental setup for ASE analysis (a) and the photograph (b) of SiO2/SiOx:Si-nc/SiO2/Si strip-loaded waveguide pumped by He-Cd laser.

Fig. 4
Fig. 4

(a) ASE spectra vs. pumping lengths. (b) ASE spectra vs. pumping powers.

Fig. 5
Fig. 5

(a) Normalized PL and ASE spectrum. (b) ASE intensity at 805 nm vs. pumping length.

Fig. 6
Fig. 6

Experimental setup of the 785-nm FPLD based small-signal power gain analysis.

Fig. 7
Fig. 7

(a) The amplified traces of modulated FPLD signal from waveguide without and with pumping. (b) The small-signal power gain vs. output signal power and the fitting curve (solid line). Inset: the close look for the curve fitting.

Fig. 8
Fig. 8

(a) The amplified traces of modulated FPLD at different pumping powers. (b) The small-signal power gain of waveguide versus pumping power.

Metrics