Abstract

For a suspended core nanofiber, the holey region is expected to be as large as possible to propagate the light at wavelengths as long as possible. Additionally, a large holey region is significant for its applications in sensors. However, the fabrication of nanofiber with large holey region is still a challenge so far. In this paper a method, which involves pumping positive pressure of nitrogen gas in both the cane fabrication and fiber-drawing processes, was proposed. A suspended core nanofiber, with a core diameter of around 480 nm and an unprecedented diameter ratio of holey region to core (DRHC) of at least 62, was fabricated in the length of several hundred meters. Owing to the large holey region, the confinement loss of the suspended core nanofiber is insignificant when the wavelength of light propagated in it is 1700 nm. For this fabrication technique, the nanowire length, fabrication efficiency, and the uniformity in the diameter are much superior to those of the nanowires fabricated in other ways. Finally, single mode third harmonic generation was observed by this nanofiber under the pump of a 1557 nm femtosecond fiber laser. This work shows the prospect of fabrication of nanostructured waveguide in glass materials by an inflation technique.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  2. D. Appell, “Nanotechnology. Wired for success,” Nature 419(6907), 553–555 (2002).
    [CrossRef] [PubMed]
  3. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
    [CrossRef] [PubMed]
  4. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1(1), 162–235 (2009).
    [CrossRef]
  5. X. Xing, Y. Wang, and B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Opt. Express 16(14), 10815–10822 (2008).
    [CrossRef] [PubMed]
  6. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
    [CrossRef] [PubMed]
  7. Y. Lize, E. Magi, V. Taeed, J. Bolger, and B. J. Eggleton, “Nanostructure silica photonic wires,” in Frontiers in Optics, OSA Technical Digest Series (Optical Society of America, 2004), paper FWO2.
  8. L. Tong and E. Mazur, ““Glass nanofibers for micro- and nano-scale photonic devices.” J. Non-Crystal,” Solids 354, 1240–1244 (2008).
  9. N. A. Wolchover, F. Luan, A. K. George, J. C. Knight, and F. G. Omenetto, “High nonlinearity glass photonic crystal nanowires,” Opt. Express 15(3), 829–833 (2007).
    [CrossRef] [PubMed]
  10. D. I. Yeom, E. C. Mägi, M. R. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  11. D. Li and Y. Xia, “Fabrication of titania nanofibers by electrospinning,” Nano Lett. 3(4), 555–560 (2003).
    [CrossRef]
  12. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
    [CrossRef] [PubMed]
  13. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [CrossRef] [PubMed]
  14. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
    [CrossRef] [PubMed]
  15. W. Q. Zhang, V. S. Afshar, H. Ebendorff-Heidepriem, T. M. Monro, S. Afshar, V. H. Ebendorff-Heidepriem, and T. M Monro, “Record nonlinearity in optical fibre,” Electron. Lett. 44(25), 1453–1455 (2008).
    [CrossRef]
  16. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
    [CrossRef]
  17. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42(9), 517–518 (2006).
    [CrossRef]
  18. L. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34(18), 2724–2726 (2009).
    [CrossRef] [PubMed]
  19. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17(18), 15481–15490 (2009).
    [CrossRef] [PubMed]
  20. Y. K. Lizé, E. Mägi, V. Ta’eed, J. Bolger, P. Steinvurzel, and B. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12(14), 3209–3217 (2004).
    [CrossRef] [PubMed]
  21. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
    [CrossRef] [PubMed]
  22. C. Chaudhari, T. Suzuki, and Y. Ohishi, “Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-Band,” OFC San Diego, 22–26 March 2009, OTuC4 (2009).
  23. H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured indexguiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
    [CrossRef]
  24. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
    [CrossRef] [PubMed]
  25. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
    [CrossRef] [PubMed]
  26. S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
    [CrossRef] [PubMed]
  27. Z. Aleksei, “Multimode guided-wave non-3omega third-harmonic generation by ultrashort laser pulses,” J. Opt. Soc. Am. B 22(10), 2263–2269 (2005).
    [CrossRef]
  28. G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express 15(9), 5382–5387 (2007).
    [CrossRef] [PubMed]
  29. B. Kibler, R. Fischer, G. Genty, D. N. Neshev, and J. M. Dudley, “Simultaneous fs pulse spectral broadening and third harmonic generation in highly nonlinear fibre: experiments and simulations,” Appl. Phys. B 91(2), 349–352 (2008).
    [CrossRef]
  30. G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second, third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35(1), 58–60 (2010).
    [CrossRef] [PubMed]
  31. F. Omenetto, A. Efimov, A. Taylor, J. Knight, W. Wadsworth, and P. Russell, “Polarization dependent harmonic generation in microstructured fibers,” Opt. Express 11(1), 61–67 (2003).
    [CrossRef] [PubMed]
  32. A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express 16(18), 14255–14262 (2008).
    [CrossRef] [PubMed]
  33. K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
    [CrossRef] [PubMed]

2010 (1)

2009 (8)

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
[CrossRef] [PubMed]

S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
[CrossRef] [PubMed]

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1(1), 162–235 (2009).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

L. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett. 34(18), 2724–2726 (2009).
[CrossRef] [PubMed]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17(18), 15481–15490 (2009).
[CrossRef] [PubMed]

2008 (8)

W. Q. Zhang, V. S. Afshar, H. Ebendorff-Heidepriem, T. M. Monro, S. Afshar, V. H. Ebendorff-Heidepriem, and T. M Monro, “Record nonlinearity in optical fibre,” Electron. Lett. 44(25), 1453–1455 (2008).
[CrossRef]

X. Xing, Y. Wang, and B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Opt. Express 16(14), 10815–10822 (2008).
[CrossRef] [PubMed]

L. Tong and E. Mazur, ““Glass nanofibers for micro- and nano-scale photonic devices.” J. Non-Crystal,” Solids 354, 1240–1244 (2008).

D. I. Yeom, E. C. Mägi, M. R. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured indexguiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express 16(18), 14255–14262 (2008).
[CrossRef] [PubMed]

B. Kibler, R. Fischer, G. Genty, D. N. Neshev, and J. M. Dudley, “Simultaneous fs pulse spectral broadening and third harmonic generation in highly nonlinear fibre: experiments and simulations,” Appl. Phys. B 91(2), 349–352 (2008).
[CrossRef]

2007 (3)

2006 (2)

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42(9), 517–518 (2006).
[CrossRef]

2005 (2)

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

Z. Aleksei, “Multimode guided-wave non-3omega third-harmonic generation by ultrashort laser pulses,” J. Opt. Soc. Am. B 22(10), 2263–2269 (2005).
[CrossRef]

2004 (3)

2003 (3)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

D. Li and Y. Xia, “Fabrication of titania nanofibers by electrospinning,” Nano Lett. 3(4), 555–560 (2003).
[CrossRef]

F. Omenetto, A. Efimov, A. Taylor, J. Knight, W. Wadsworth, and P. Russell, “Polarization dependent harmonic generation in microstructured fibers,” Opt. Express 11(1), 61–67 (2003).
[CrossRef] [PubMed]

2002 (1)

D. Appell, “Nanotechnology. Wired for success,” Nature 419(6907), 553–555 (2002).
[CrossRef] [PubMed]

Afshar, S.

W. Q. Zhang, V. S. Afshar, H. Ebendorff-Heidepriem, T. M. Monro, S. Afshar, V. H. Ebendorff-Heidepriem, and T. M Monro, “Record nonlinearity in optical fibre,” Electron. Lett. 44(25), 1453–1455 (2008).
[CrossRef]

Afshar, V. S.

W. Q. Zhang, V. S. Afshar, H. Ebendorff-Heidepriem, T. M. Monro, S. Afshar, V. H. Ebendorff-Heidepriem, and T. M Monro, “Record nonlinearity in optical fibre,” Electron. Lett. 44(25), 1453–1455 (2008).
[CrossRef]

Afshar V, S.

Aleksei, Z.

Appell, D.

D. Appell, “Nanotechnology. Wired for success,” Nature 419(6907), 553–555 (2002).
[CrossRef] [PubMed]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Bartelt, H.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured indexguiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Bétourné, A.

Birks, T. A.

Bolger, J.

Bouwmans, G.

Brambilla, G.

Chaudhari, C.

Chen, X.

Dadap, J. I.

Douay, M.

Dudley, J. M.

B. Kibler, R. Fischer, G. Genty, D. N. Neshev, and J. M. Dudley, “Simultaneous fs pulse spectral broadening and third harmonic generation in highly nonlinear fibre: experiments and simulations,” Appl. Phys. B 91(2), 349–352 (2008).
[CrossRef]

G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express 15(9), 5382–5387 (2007).
[CrossRef] [PubMed]

Dulkeith, E.

Ebendorff-Heidepriem, H.

Ebendorff-Heidepriem, V. H.

W. Q. Zhang, V. S. Afshar, H. Ebendorff-Heidepriem, T. M. Monro, S. Afshar, V. H. Ebendorff-Heidepriem, and T. M Monro, “Record nonlinearity in optical fibre,” Electron. Lett. 44(25), 1453–1455 (2008).
[CrossRef]

Efimov, A.

Eggleton, B.

Eggleton, B. J.

England, R.

Feng, X.

Finazzi, V.

Fischer, R.

B. Kibler, R. Fischer, G. Genty, D. N. Neshev, and J. M. Dudley, “Simultaneous fs pulse spectral broadening and third harmonic generation in highly nonlinear fibre: experiments and simulations,” Appl. Phys. B 91(2), 349–352 (2008).
[CrossRef]

Foster, M. A.

Fu, L.

Gaeta, A. L.

Gattass, R. R.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Genty, G.

B. Kibler, R. Fischer, G. Genty, D. N. Neshev, and J. M. Dudley, “Simultaneous fs pulse spectral broadening and third harmonic generation in highly nonlinear fibre: experiments and simulations,” Appl. Phys. B 91(2), 349–352 (2008).
[CrossRef]

G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express 15(9), 5382–5387 (2007).
[CrossRef] [PubMed]

George, A. K.

Goldberger, J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Green, W. M. J.

Grogan, M. D. W.

He, J.

He, S.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Horak, P.

Hsieh, I.

Hu, L.

Huang, K.

Johnson, J. C.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Jung, Y.

Kibler, B.

B. Kibler, R. Fischer, G. Genty, D. N. Neshev, and J. M. Dudley, “Simultaneous fs pulse spectral broadening and third harmonic generation in highly nonlinear fibre: experiments and simulations,” Appl. Phys. B 91(2), 349–352 (2008).
[CrossRef]

G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express 15(9), 5382–5387 (2007).
[CrossRef] [PubMed]

Kinsler, P.

Kito, C.

Knight, J.

Knight, J. C.

Kobelke, J.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured indexguiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Koizumi, F.

Koukharenko, E.

Lamont, M. R.

Law, M.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Lehmann, H.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured indexguiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Leon-Saval, S. G.

Li, B.

Li, D.

D. Li and Y. Xia, “Fabrication of titania nanofibers by electrospinning,” Nano Lett. 3(4), 555–560 (2003).
[CrossRef]

Liao, M.

Lipson, M.

Liu, L.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

Liu, X.

Lizé, Y. K.

Lou, J.

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Luan, F.

Mägi, E.

Mägi, E. C.

Matsumoto, M.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong and E. Mazur, ““Glass nanofibers for micro- and nano-scale photonic devices.” J. Non-Crystal,” Solids 354, 1240–1244 (2008).

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Misumi, T.

Monro, T. M

W. Q. Zhang, V. S. Afshar, H. Ebendorff-Heidepriem, T. M. Monro, S. Afshar, V. H. Ebendorff-Heidepriem, and T. M Monro, “Record nonlinearity in optical fibre,” Electron. Lett. 44(25), 1453–1455 (2008).
[CrossRef]

Monro, T. M.

Murugan, G. S.

Neshev, D. N.

B. Kibler, R. Fischer, G. Genty, D. N. Neshev, and J. M. Dudley, “Simultaneous fs pulse spectral broadening and third harmonic generation in highly nonlinear fibre: experiments and simulations,” Appl. Phys. B 91(2), 349–352 (2008).
[CrossRef]

Ohishi, Y.

Omenetto, F.

Omenetto, F. G.

Osgood, R. M.

Panoiu, N. C.

Qin, G.

Qiu, J.

Quiquempois, Y.

Richardson, D.

Richardson, D. J.

Roelens, M. A.

Russell, P.

Saykally, R. J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Schuster, K.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured indexguiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Schwuchow, A.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured indexguiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Sessions, N. P.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shen, Y.

Sirbuly, D. J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Steinvurzel, P.

Suzuki, T.

Ta’eed, V.

Taylor, A.

Tong, L.

L. Tong and E. Mazur, ““Glass nanofibers for micro- and nano-scale photonic devices.” J. Non-Crystal,” Solids 354, 1240–1244 (2008).

K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
[CrossRef] [PubMed]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

Tong, L. M.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Turner, A. C.

Vlasov, Y. A.

Wadsworth, W.

Wadsworth, W. J.

Wang, Y.

Warren-Smith, S. C.

Wilkinson, J. S.

Williams, R.

Willsch, R.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured indexguiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Wolchover, N. A.

Xia, Y.

D. Li and Y. Xia, “Fabrication of titania nanofibers by electrospinning,” Nano Lett. 3(4), 555–560 (2003).
[CrossRef]

Xiao, L.

Xing, X.

Xu, F.

Yan, X.

Yang, P.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Yang, Q.

Yang, S.

Ye, Z.

Yeom, D. I.

Zhang, J.

Zhang, W. Q.

S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009).
[CrossRef] [PubMed]

W. Q. Zhang, V. S. Afshar, H. Ebendorff-Heidepriem, T. M. Monro, S. Afshar, V. H. Ebendorff-Heidepriem, and T. M Monro, “Record nonlinearity in optical fibre,” Electron. Lett. 44(25), 1453–1455 (2008).
[CrossRef]

Adv. Opt. Photon. (2)

Appl. Opt. (1)

Appl. Phys. B (1)

B. Kibler, R. Fischer, G. Genty, D. N. Neshev, and J. M. Dudley, “Simultaneous fs pulse spectral broadening and third harmonic generation in highly nonlinear fibre: experiments and simulations,” Appl. Phys. B 91(2), 349–352 (2008).
[CrossRef]

Electron. Lett. (2)

W. Q. Zhang, V. S. Afshar, H. Ebendorff-Heidepriem, T. M. Monro, S. Afshar, V. H. Ebendorff-Heidepriem, and T. M Monro, “Record nonlinearity in optical fibre,” Electron. Lett. 44(25), 1453–1455 (2008).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42(9), 517–518 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

D. Li and Y. Xia, “Fabrication of titania nanofibers by electrospinning,” Nano Lett. 3(4), 555–560 (2003).
[CrossRef]

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

Nature (2)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

D. Appell, “Nanotechnology. Wired for success,” Nature 419(6907), 553–555 (2002).
[CrossRef] [PubMed]

Opt. Express (13)

X. Xing, Y. Wang, and B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Opt. Express 16(14), 10815–10822 (2008).
[CrossRef] [PubMed]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

N. A. Wolchover, F. Luan, A. K. George, J. C. Knight, and F. G. Omenetto, “High nonlinearity glass photonic crystal nanowires,” Opt. Express 15(3), 829–833 (2007).
[CrossRef] [PubMed]

G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express 15(9), 5382–5387 (2007).
[CrossRef] [PubMed]

F. Omenetto, A. Efimov, A. Taylor, J. Knight, W. Wadsworth, and P. Russell, “Polarization dependent harmonic generation in microstructured fibers,” Opt. Express 11(1), 61–67 (2003).
[CrossRef] [PubMed]

A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express 16(18), 14255–14262 (2008).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
[CrossRef] [PubMed]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17(18), 15481–15490 (2009).
[CrossRef] [PubMed]

Y. K. Lizé, E. Mägi, V. Ta’eed, J. Bolger, P. Steinvurzel, and B. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12(14), 3209–3217 (2004).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. SPIE (1)

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured indexguiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Science (1)

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Solids (1)

L. Tong and E. Mazur, ““Glass nanofibers for micro- and nano-scale photonic devices.” J. Non-Crystal,” Solids 354, 1240–1244 (2008).

Other (2)

Y. Lize, E. Magi, V. Taeed, J. Bolger, and B. J. Eggleton, “Nanostructure silica photonic wires,” in Frontiers in Optics, OSA Technical Digest Series (Optical Society of America, 2004), paper FWO2.

C. Chaudhari, T. Suzuki, and Y. Ohishi, “Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-Band,” OFC San Diego, 22–26 March 2009, OTuC4 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the ideal suspended core nanofiber. (b) Confinement loss spectra of the nanofibers with the core diameter of 350 nm, which is the optimal diameter for nonlinearity of 800 nm light. DRHC = Φ12.

Figure 2
Figure 2

Schematic diagram of the fabrication process of the final cane: a. cast rod, b. cast tube, c. tube with rod inside, d. original cane, e. tube to be inserted by original cane, f. cross section of the final cane. It was taken by optical microscope. The length of scale bar is 500 μm. (1). Elongation without pump pressure. (2). Elongation with pump pressure.

Fig. 3
Fig. 3

Cross sections of the nanofiber. Image a was taken by optical microscope. Images b, c and d were taken by a scanning electron microscope.

Fig. 4
Fig. 4

Chromatic dispersion and confinement loss of the fundamental mode of the fabricated nanofiber. The inset shows the calculated mode field at 800 nm.

Fig. 5
Fig. 5

(a) The THG in the nanofiber and its far-field pattern. (b) The pulse energy dependent SC spectra measured by using a homemade femtosecond fiber laser at 1557 nm. The inset in (b) shows the far-field mode profile of THG. It is closer to the termination of fiber than (a).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A = 0.573 λ 2 ( n c o r e + n c l a d ) 1.2 ( n c o r e n c l a d ) 0.8
Δ P = σ 1 R S f S p
r 0 = S p S f R

Metrics