Abstract

We report a novel photoacoustic Z-scan (PAZ-scan) technique that combines the advantages offered by the conventional Z-scan method and the sensitivity of the photoacoustic detection. The sample is scanned through the focused laser beam and the generated photoacoustic signal is recorded using a 10 MHz focused ultrasound transducer. Since the signal strength is directly proportional to the optical absorption, PAZ-scan displays nonlinear behavior depicting the nonlinear optical absorption of the material. Among many advantages, our experiments on mouse blood show that PAZ-scan can potentially be used as a standard technique to calibrate contrast agents used in theranostics in general and photoacoustics in particular.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wang and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. A, Pure Appl. Opt. 11(2), 024001 (2009).
    [CrossRef]
  2. X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39(9), 747–753 (2007).
    [CrossRef] [PubMed]
  3. F. Kajzar and J. Messier, “Third-harmonic generation in liquids,” Phys. Rev. A 32(4), 2352–2363 (1985).
    [CrossRef] [PubMed]
  4. E. J. Canto-Said, D. J. Hagan, J. Young, and E. W. Van Stryland, “Degenerate four-wave mixing measurements of high order nonlinearities in semiconductors,” IEEE J. Quantum Electron. 27(10), 2274–2280 (1991).
    [CrossRef]
  5. M. J. Moran, C. Y. She, and R. L. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system related materials,” IEEE J. Quantum Electron. 11(6), 259–263 (1975).
    [CrossRef]
  6. Y. J. Ding, C. L. Guo, G. A. Swartzlander, J. B. Khurgin, and A. E. Kaplan, “Spectral measurement of the nonlinear refractive index in ZnSe using self-bending of a pulsed laser beam,” Opt. Lett. 15(24), 1431–1433 (1990).
    [CrossRef] [PubMed]
  7. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [CrossRef]
  8. T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wave-front distortion,” Opt. Commun. 134, 529 (1994).
  9. S. M. Mian, B. Taheri, and J. P. Wicksted, “Effects of beam ellipticity on Z-scan measurements,” J. Opt. Soc. Am. B 13(5), 856 (1996).
    [CrossRef]
  10. P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two-dimensional Z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85(10), 7043 (1999).
    [CrossRef]
  11. A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305 (1880).
  12. A. Hordvik and H. Schlossberg, “Photoacoustic technique for determining optical absorption coefficients in solids,” Appl. Opt. 16(1), 101–107 (1977).
    [CrossRef] [PubMed]
  13. A. C. Tam and C. K. Patel, “Two-photon absorption spectra and cross-section measurements in liquids,” Nature 280(5720), 304–306 (1979).
    [CrossRef]
  14. Y. C. Teng and B. S. H. Royce, “Absolute optical absorption coefficient measurements using photoacoustic spectroscopy amplitude and phase information,” J. Opt. Soc. Am. 70(5), 557 (1980).
    [CrossRef]
  15. N. G. C. Astrath, A. C. Bento, M. L. Baesso, R. Ferreira da Silva, C. Ahuja, S. Persson, Zhao, and C. G. Granqvist, “Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors,” J. Phys. IV 125, 181–183 (2005).
  16. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [CrossRef]
  17. V. Torres-Zúñiga, R. Castañeda-Guzmán, S. J. Pérez-Ruiz, O. G. Morales-Saavedra, and M. Zepahua-Camacho, “Optical absorption photoacoustic measurements for determination of molecular symmetries in a dichroic organic-film,” Opt. Express 16(25), 20724–20733 (2008).
    [CrossRef] [PubMed]
  18. S. Mallidi and S. Emelianov, “Photoacoustic technique to measure beam profile of pulsed laser systems,” Rev. Sci. Instrum. 80(5), 054901 (2009).
    [CrossRef] [PubMed]
  19. K. V. Larin, I. V. Larina, M. Motamedi, and R. O. Esenaliev, “Optoacoustic laser monitoring of cooling and freezing of tissues,” Quantum Electron. 32(11), 953–958 (2002).
    [CrossRef]
  20. A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
    [CrossRef] [PubMed]
  21. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [CrossRef] [PubMed]

2009 (3)

J. Wang and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. A, Pure Appl. Opt. 11(2), 024001 (2009).
[CrossRef]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef]

S. Mallidi and S. Emelianov, “Photoacoustic technique to measure beam profile of pulsed laser systems,” Rev. Sci. Instrum. 80(5), 054901 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (1)

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39(9), 747–753 (2007).
[CrossRef] [PubMed]

2005 (1)

N. G. C. Astrath, A. C. Bento, M. L. Baesso, R. Ferreira da Silva, C. Ahuja, S. Persson, Zhao, and C. G. Granqvist, “Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors,” J. Phys. IV 125, 181–183 (2005).

2002 (1)

K. V. Larin, I. V. Larina, M. Motamedi, and R. O. Esenaliev, “Optoacoustic laser monitoring of cooling and freezing of tissues,” Quantum Electron. 32(11), 953–958 (2002).
[CrossRef]

1999 (1)

P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two-dimensional Z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85(10), 7043 (1999).
[CrossRef]

1996 (1)

1994 (1)

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wave-front distortion,” Opt. Commun. 134, 529 (1994).

1991 (1)

E. J. Canto-Said, D. J. Hagan, J. Young, and E. W. Van Stryland, “Degenerate four-wave mixing measurements of high order nonlinearities in semiconductors,” IEEE J. Quantum Electron. 27(10), 2274–2280 (1991).
[CrossRef]

1990 (2)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Y. J. Ding, C. L. Guo, G. A. Swartzlander, J. B. Khurgin, and A. E. Kaplan, “Spectral measurement of the nonlinear refractive index in ZnSe using self-bending of a pulsed laser beam,” Opt. Lett. 15(24), 1431–1433 (1990).
[CrossRef] [PubMed]

1985 (1)

F. Kajzar and J. Messier, “Third-harmonic generation in liquids,” Phys. Rev. A 32(4), 2352–2363 (1985).
[CrossRef] [PubMed]

1980 (1)

1979 (1)

A. C. Tam and C. K. Patel, “Two-photon absorption spectra and cross-section measurements in liquids,” Nature 280(5720), 304–306 (1979).
[CrossRef]

1977 (1)

1975 (1)

M. J. Moran, C. Y. She, and R. L. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system related materials,” IEEE J. Quantum Electron. 11(6), 259–263 (1975).
[CrossRef]

1880 (1)

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305 (1880).

Ahuja, C.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, R. Ferreira da Silva, C. Ahuja, S. Persson, Zhao, and C. G. Granqvist, “Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors,” J. Phys. IV 125, 181–183 (2005).

Astrath, N. G. C.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, R. Ferreira da Silva, C. Ahuja, S. Persson, Zhao, and C. G. Granqvist, “Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors,” J. Phys. IV 125, 181–183 (2005).

Baesso, M. L.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, R. Ferreira da Silva, C. Ahuja, S. Persson, Zhao, and C. G. Granqvist, “Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors,” J. Phys. IV 125, 181–183 (2005).

Bell, A. G.

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305 (1880).

Bento, A. C.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, R. Ferreira da Silva, C. Ahuja, S. Persson, Zhao, and C. G. Granqvist, “Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors,” J. Phys. IV 125, 181–183 (2005).

Blau, W. J.

J. Wang and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. A, Pure Appl. Opt. 11(2), 024001 (2009).
[CrossRef]

Bodapati, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Canto-Said, E. J.

E. J. Canto-Said, D. J. Hagan, J. Young, and E. W. Van Stryland, “Degenerate four-wave mixing measurements of high order nonlinearities in semiconductors,” IEEE J. Quantum Electron. 27(10), 2274–2280 (1991).
[CrossRef]

Carman, R. L.

M. J. Moran, C. Y. She, and R. L. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system related materials,” IEEE J. Quantum Electron. 11(6), 259–263 (1975).
[CrossRef]

Castañeda-Guzmán, R.

Chen, P.

P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two-dimensional Z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85(10), 7043 (1999).
[CrossRef]

Chen, X.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Cheng, Z.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Dai, H.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

De La Zerda, A.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Ding, Y. J.

El-Sayed, I. H.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39(9), 747–753 (2007).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39(9), 747–753 (2007).
[CrossRef] [PubMed]

Emelianov, S.

S. Mallidi and S. Emelianov, “Photoacoustic technique to measure beam profile of pulsed laser systems,” Rev. Sci. Instrum. 80(5), 054901 (2009).
[CrossRef] [PubMed]

Esenaliev, R. O.

K. V. Larin, I. V. Larina, M. Motamedi, and R. O. Esenaliev, “Optoacoustic laser monitoring of cooling and freezing of tissues,” Quantum Electron. 32(11), 953–958 (2002).
[CrossRef]

Ferreira da Silva, R.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, R. Ferreira da Silva, C. Ahuja, S. Persson, Zhao, and C. G. Granqvist, “Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors,” J. Phys. IV 125, 181–183 (2005).

Gambhir, S. S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Granqvist, C. G.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, R. Ferreira da Silva, C. Ahuja, S. Persson, Zhao, and C. G. Granqvist, “Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors,” J. Phys. IV 125, 181–183 (2005).

Guo, C. L.

Hagan, D. J.

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wave-front distortion,” Opt. Commun. 134, 529 (1994).

E. J. Canto-Said, D. J. Hagan, J. Young, and E. W. Van Stryland, “Degenerate four-wave mixing measurements of high order nonlinearities in semiconductors,” IEEE J. Quantum Electron. 27(10), 2274–2280 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Hordvik, A.

Hu, S.

Huang, X.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39(9), 747–753 (2007).
[CrossRef] [PubMed]

Kajzar, F.

F. Kajzar and J. Messier, “Third-harmonic generation in liquids,” Phys. Rev. A 32(4), 2352–2363 (1985).
[CrossRef] [PubMed]

Kaplan, A. E.

Keren, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Khurgin, J. B.

Khuri-Yakub, B. T.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Larin, K. V.

K. V. Larin, I. V. Larina, M. Motamedi, and R. O. Esenaliev, “Optoacoustic laser monitoring of cooling and freezing of tissues,” Quantum Electron. 32(11), 953–958 (2002).
[CrossRef]

Larina, I. V.

K. V. Larin, I. V. Larina, M. Motamedi, and R. O. Esenaliev, “Optoacoustic laser monitoring of cooling and freezing of tissues,” Quantum Electron. 32(11), 953–958 (2002).
[CrossRef]

Levi, J.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Liu, Z.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Ma, T. J.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Mallidi, S.

S. Mallidi and S. Emelianov, “Photoacoustic technique to measure beam profile of pulsed laser systems,” Rev. Sci. Instrum. 80(5), 054901 (2009).
[CrossRef] [PubMed]

Maslov, K.

Messier, J.

F. Kajzar and J. Messier, “Third-harmonic generation in liquids,” Phys. Rev. A 32(4), 2352–2363 (1985).
[CrossRef] [PubMed]

Mian, S. M.

Morales-Saavedra, O. G.

Moran, M. J.

M. J. Moran, C. Y. She, and R. L. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system related materials,” IEEE J. Quantum Electron. 11(6), 259–263 (1975).
[CrossRef]

Motamedi, M.

K. V. Larin, I. V. Larina, M. Motamedi, and R. O. Esenaliev, “Optoacoustic laser monitoring of cooling and freezing of tissues,” Quantum Electron. 32(11), 953–958 (2002).
[CrossRef]

Oralkan, O.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Oulianov, D. A.

P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two-dimensional Z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85(10), 7043 (1999).
[CrossRef]

Patel, C. K.

A. C. Tam and C. K. Patel, “Two-photon absorption spectra and cross-section measurements in liquids,” Nature 280(5720), 304–306 (1979).
[CrossRef]

Pérez-Ruiz, S. J.

Persson, S.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, R. Ferreira da Silva, C. Ahuja, S. Persson, Zhao, and C. G. Granqvist, “Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors,” J. Phys. IV 125, 181–183 (2005).

Qian, W.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39(9), 747–753 (2007).
[CrossRef] [PubMed]

Rentzepis, P. M.

P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two-dimensional Z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85(10), 7043 (1999).
[CrossRef]

Royce, B. S. H.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Schlossberg, H.

She, C. Y.

M. J. Moran, C. Y. She, and R. L. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system related materials,” IEEE J. Quantum Electron. 11(6), 259–263 (1975).
[CrossRef]

Sheik-Bahae, M.

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wave-front distortion,” Opt. Commun. 134, 529 (1994).

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Smith, B. R.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Swartzlander, G. A.

Taheri, B.

Tam, A. C.

A. C. Tam and C. K. Patel, “Two-photon absorption spectra and cross-section measurements in liquids,” Nature 280(5720), 304–306 (1979).
[CrossRef]

Teng, Y. C.

Tomov, I. V.

P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two-dimensional Z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85(10), 7043 (1999).
[CrossRef]

Torres-Zúñiga, V.

Vaithilingam, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Van Stryland, E. W.

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wave-front distortion,” Opt. Commun. 134, 529 (1994).

E. J. Canto-Said, D. J. Hagan, J. Young, and E. W. Van Stryland, “Degenerate four-wave mixing measurements of high order nonlinearities in semiconductors,” IEEE J. Quantum Electron. 27(10), 2274–2280 (1991).
[CrossRef]

Vanstryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Wang, J.

J. Wang and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. A, Pure Appl. Opt. 11(2), 024001 (2009).
[CrossRef]

Wang, L. V.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Wicksted, J. P.

Xia, T.

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wave-front distortion,” Opt. Commun. 134, 529 (1994).

Young, J.

E. J. Canto-Said, D. J. Hagan, J. Young, and E. W. Van Stryland, “Degenerate four-wave mixing measurements of high order nonlinearities in semiconductors,” IEEE J. Quantum Electron. 27(10), 2274–2280 (1991).
[CrossRef]

Zavaleta, C.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Zepahua-Camacho, M.

Zhang, H. F.

Zhao,

N. G. C. Astrath, A. C. Bento, M. L. Baesso, R. Ferreira da Silva, C. Ahuja, S. Persson, Zhao, and C. G. Granqvist, “Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors,” J. Phys. IV 125, 181–183 (2005).

Am. J. Sci. (1)

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305 (1880).

Appl. Opt. (1)

IEEE J. Quantum Electron. (3)

E. J. Canto-Said, D. J. Hagan, J. Young, and E. W. Van Stryland, “Degenerate four-wave mixing measurements of high order nonlinearities in semiconductors,” IEEE J. Quantum Electron. 27(10), 2274–2280 (1991).
[CrossRef]

M. J. Moran, C. Y. She, and R. L. Carman, “Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2 in laser-system related materials,” IEEE J. Quantum Electron. 11(6), 259–263 (1975).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

J. Appl. Phys. (1)

P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two-dimensional Z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85(10), 7043 (1999).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

J. Wang and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. A, Pure Appl. Opt. 11(2), 024001 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. IV (1)

N. G. C. Astrath, A. C. Bento, M. L. Baesso, R. Ferreira da Silva, C. Ahuja, S. Persson, Zhao, and C. G. Granqvist, “Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors,” J. Phys. IV 125, 181–183 (2005).

Lasers Surg. Med. (1)

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39(9), 747–753 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef]

Nature (1)

A. C. Tam and C. K. Patel, “Two-photon absorption spectra and cross-section measurements in liquids,” Nature 280(5720), 304–306 (1979).
[CrossRef]

Opt. Commun. (1)

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wave-front distortion,” Opt. Commun. 134, 529 (1994).

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

F. Kajzar and J. Messier, “Third-harmonic generation in liquids,” Phys. Rev. A 32(4), 2352–2363 (1985).
[CrossRef] [PubMed]

Quantum Electron. (1)

K. V. Larin, I. V. Larina, M. Motamedi, and R. O. Esenaliev, “Optoacoustic laser monitoring of cooling and freezing of tissues,” Quantum Electron. 32(11), 953–958 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Mallidi and S. Emelianov, “Photoacoustic technique to measure beam profile of pulsed laser systems,” Rev. Sci. Instrum. 80(5), 054901 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the PAZ-scan setup

Fig. 2
Fig. 2

(a) Conventional Z-scan signal of CuPc solution. Solid lines are the theoretical fit to the experimental data. The on-axis peak intensity I0 = 6.1x1011 W/m2 and the best fit β value is 3.976x10−9 m/W. (b) PAZ-scan curves for the same solution for I0 = 8.54x1011 W/m2 (open circles) and 1.28x1012 W/m2 (closed circles). The corresponding β values are 5.765x10−9 m/W and 9.013x10−9 m/W respectively. Y-axis data is normalized to the far field signal.

Fig. 3
Fig. 3

(a) Conventional Z-scan signal of Azo-red solution (saturable absorber) for the input energy of 78 μJ. (b) PAZ-scan curves for the same solution for 28 μJ (open circles) and 42 μJ (closed circles). Solid lines are the theoretical fit to the experimental data. Y-axis data is normalized to the far field signal.

Fig. 4
Fig. 4

PAZ-scan of mouse blood demonstrating the saturable absorption behavior.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

μ R S A = α 0 R S A + β I
T = ( exp ( α 0 R S A L ) / π q 0 ) + ln [ 1 + q 0 exp ( t 2 ) ] d t
p ( z ) = Γ μ a I ( z )
T = exp ( α 0 S A L ) exp ( ( I o I s ) ( 1 T ) )
μ S A = α 0 S A 1 + I I S

Metrics