Abstract

Losses are the main evil that limits the use of metamaterials in practical applications. While radiation losses may be controlled by design, Joule losses are hereditary to the metamaterial structures. An exception is superconducting metamaterials, where Joule losses can be uniquely controlled with temperature in a very wide range. We put this in use by demonstrating temperature-dependent transmission in the millimeter-wave part of the spectrum in high-Tc superconducting cuprate metamaterials supporting sub-radiant resonances of Fano type.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [CrossRef] [PubMed]
  2. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [CrossRef] [PubMed]
  3. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
    [CrossRef] [PubMed]
  4. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
    [CrossRef]
  5. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [CrossRef] [PubMed]
  6. N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photonics News 20(10), 22 (2009).
    [CrossRef]
  7. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” arXiv:0902.3014v4.
  8. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 9 (to be published).
    [PubMed]
  9. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
    [CrossRef] [PubMed]
  10. A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. (to be published).
    [PubMed]
  11. Z. L. Sámson, K. F. MacDonald, F. DeAngelis, B. Gholipour, K. Knight, C. C. Huang, E. DiFabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
    [CrossRef]
  12. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [CrossRef] [PubMed]
  13. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009).
    [CrossRef] [PubMed]
  14. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
    [CrossRef] [PubMed]
  15. D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95(15), 151102 (2009).
    [CrossRef]
  16. K. Boratay Alici and E. Ozbay, “Low-temperature behavior of magnetic metamaterial elements,” N. J. Phys. 11(4), 043015 (2009).
    [CrossRef]
  17. R. Singh, Z. Tian, J. G. Han, C. Rockstuhl, J. Q. Gu, and W. L. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
    [CrossRef]
  18. M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
    [CrossRef]
  19. F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, “A d.c. magnetic metamaterial,” Nat. Mater. 7(4), 295–297 (2008).
    [CrossRef] [PubMed]
  20. N. Klein, “High-frequency applications of high-temperature superconductor thin films,” Rep. Prog. Phys. 65(10), 1387–1425 (2002).
    [CrossRef]
  21. A. Tsiatmas, R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. de Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” arXiv:1004.0729.
  22. V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of meta-molecules,” arXiv: 0908.2533.
  23. T. Van Duzer, and C. W. Turner, Principles of Superconducting Devices and Circuits (Elsevier, New York, 1981).
  24. R. Schwab, E. Gaganidze, J. Halbritter, R. Heidinger, R. Aidam, and R. Schneider, “YBCO wafer qualification by surface resistance measurements combined with performance studies of microstrip resonators,” J. Phys. C. Superconduct. Appl. 351, 25–28 (2001).
    [CrossRef]
  25. J. Talvacchio, M. G. Forrester, J. R. Gavaler, and T. T. Braggins, “Large-area YBCO films for microwave applications,” IEEE Trans. Magn. 27(2), 978–981 (1991).
    [CrossRef]

2010 (2)

R. Singh, Z. Tian, J. G. Han, C. Rockstuhl, J. Q. Gu, and W. L. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

Z. L. Sámson, K. F. MacDonald, F. DeAngelis, B. Gholipour, K. Knight, C. C. Huang, E. DiFabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[CrossRef]

2009 (8)

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[CrossRef] [PubMed]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[CrossRef]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photonics News 20(10), 22 (2009).
[CrossRef]

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95(15), 151102 (2009).
[CrossRef]

K. Boratay Alici and E. Ozbay, “Low-temperature behavior of magnetic metamaterial elements,” N. J. Phys. 11(4), 043015 (2009).
[CrossRef]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009).
[CrossRef] [PubMed]

2008 (4)

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, “A d.c. magnetic metamaterial,” Nat. Mater. 7(4), 295–297 (2008).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

2005 (1)

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[CrossRef]

2002 (1)

N. Klein, “High-frequency applications of high-temperature superconductor thin films,” Rep. Prog. Phys. 65(10), 1387–1425 (2002).
[CrossRef]

2001 (1)

R. Schwab, E. Gaganidze, J. Halbritter, R. Heidinger, R. Aidam, and R. Schneider, “YBCO wafer qualification by surface resistance measurements combined with performance studies of microstrip resonators,” J. Phys. C. Superconduct. Appl. 351, 25–28 (2001).
[CrossRef]

1991 (1)

J. Talvacchio, M. G. Forrester, J. R. Gavaler, and T. T. Braggins, “Large-area YBCO films for microwave applications,” IEEE Trans. Magn. 27(2), 978–981 (1991).
[CrossRef]

Aidam, R.

R. Schwab, E. Gaganidze, J. Halbritter, R. Heidinger, R. Aidam, and R. Schneider, “YBCO wafer qualification by surface resistance measurements combined with performance studies of microstrip resonators,” J. Phys. C. Superconduct. Appl. 351, 25–28 (2001).
[CrossRef]

Anlage, S. M.

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[CrossRef]

Ashburn, P.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. (to be published).
[PubMed]

Bettiol, A. A.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[CrossRef]

Bobb, D. A.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95(15), 151102 (2009).
[CrossRef]

Boden, S. A.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. (to be published).
[PubMed]

Boratay Alici, K.

K. Boratay Alici and E. Ozbay, “Low-temperature behavior of magnetic metamaterial elements,” N. J. Phys. 11(4), 043015 (2009).
[CrossRef]

Braggins, T. T.

J. Talvacchio, M. G. Forrester, J. R. Gavaler, and T. T. Braggins, “Large-area YBCO films for microwave applications,” IEEE Trans. Magn. 27(2), 978–981 (1991).
[CrossRef]

Caplin, D.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, “A d.c. magnetic metamaterial,” Nat. Mater. 7(4), 295–297 (2008).
[CrossRef] [PubMed]

Chiam, S. Y.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[CrossRef]

Cohen, L. F.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, “A d.c. magnetic metamaterial,” Nat. Mater. 7(4), 295–297 (2008).
[CrossRef] [PubMed]

De Angelis, F.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. (to be published).
[PubMed]

De La Rue, R. M.

DeAngelis, F.

Z. L. Sámson, K. F. MacDonald, F. DeAngelis, B. Gholipour, K. Knight, C. C. Huang, E. DiFabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[CrossRef]

Di Fabrizio, E.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. (to be published).
[PubMed]

DiFabrizio, E.

Z. L. Sámson, K. F. MacDonald, F. DeAngelis, B. Gholipour, K. Knight, C. C. Huang, E. DiFabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[CrossRef]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[CrossRef] [PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 9 (to be published).
[PubMed]

Fedotov, V. A.

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Forrester, M. G.

J. Talvacchio, M. G. Forrester, J. R. Gavaler, and T. T. Braggins, “Large-area YBCO films for microwave applications,” IEEE Trans. Magn. 27(2), 978–981 (1991).
[CrossRef]

Fyson, J.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, “A d.c. magnetic metamaterial,” Nat. Mater. 7(4), 295–297 (2008).
[CrossRef] [PubMed]

Gaganidze, E.

R. Schwab, E. Gaganidze, J. Halbritter, R. Heidinger, R. Aidam, and R. Schneider, “YBCO wafer qualification by surface resistance measurements combined with performance studies of microstrip resonators,” J. Phys. C. Superconduct. Appl. 351, 25–28 (2001).
[CrossRef]

Gavaler, J. R.

J. Talvacchio, M. G. Forrester, J. R. Gavaler, and T. T. Braggins, “Large-area YBCO films for microwave applications,” IEEE Trans. Magn. 27(2), 978–981 (1991).
[CrossRef]

Gavrilenko, A. V.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95(15), 151102 (2009).
[CrossRef]

Gavrilenko, V. I.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95(15), 151102 (2009).
[CrossRef]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Gholipour, B.

Z. L. Sámson, K. F. MacDonald, F. DeAngelis, B. Gholipour, K. Knight, C. C. Huang, E. DiFabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[CrossRef]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 9 (to be published).
[PubMed]

Gu, J. Q.

R. Singh, Z. Tian, J. G. Han, C. Rockstuhl, J. Q. Gu, and W. L. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

Halbritter, J.

R. Schwab, E. Gaganidze, J. Halbritter, R. Heidinger, R. Aidam, and R. Schneider, “YBCO wafer qualification by surface resistance measurements combined with performance studies of microstrip resonators,” J. Phys. C. Superconduct. Appl. 351, 25–28 (2001).
[CrossRef]

Han, J. G.

R. Singh, Z. Tian, J. G. Han, C. Rockstuhl, J. Q. Gu, and W. L. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

Heidinger, R.

R. Schwab, E. Gaganidze, J. Halbritter, R. Heidinger, R. Aidam, and R. Schneider, “YBCO wafer qualification by surface resistance measurements combined with performance studies of microstrip resonators,” J. Phys. C. Superconduct. Appl. 351, 25–28 (2001).
[CrossRef]

Hewak, D. W.

Z. L. Sámson, K. F. MacDonald, F. DeAngelis, B. Gholipour, K. Knight, C. C. Huang, E. DiFabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[CrossRef]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 9 (to be published).
[PubMed]

Huang, C. C.

Z. L. Sámson, K. F. MacDonald, F. DeAngelis, B. Gholipour, K. Knight, C. C. Huang, E. DiFabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[CrossRef]

Johnson, N. P.

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Khokhar, A. Z.

Klein, N.

N. Klein, “High-frequency applications of high-temperature superconductor thin films,” Rep. Prog. Phys. 65(10), 1387–1425 (2002).
[CrossRef]

Knight, K.

Z. L. Sámson, K. F. MacDonald, F. DeAngelis, B. Gholipour, K. Knight, C. C. Huang, E. DiFabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[CrossRef]

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[CrossRef] [PubMed]

Kuo, P.

Lahiri, B.

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 9 (to be published).
[PubMed]

Lederer, F.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[CrossRef]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 9 (to be published).
[PubMed]

MacDonald, K. F.

Z. L. Sámson, K. F. MacDonald, F. DeAngelis, B. Gholipour, K. Knight, C. C. Huang, E. DiFabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[CrossRef]

Magnus, F.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, “A d.c. magnetic metamaterial,” Nat. Mater. 7(4), 295–297 (2008).
[CrossRef] [PubMed]

Mayy, M.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95(15), 151102 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

McMeekin, S. G.

Mead, P.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95(15), 151102 (2009).
[CrossRef]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 9 (to be published).
[PubMed]

Moore, J.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, “A d.c. magnetic metamaterial,” Nat. Mater. 7(4), 295–297 (2008).
[CrossRef] [PubMed]

Morrison, K.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, “A d.c. magnetic metamaterial,” Nat. Mater. 7(4), 295–297 (2008).
[CrossRef] [PubMed]

Nikolaenko, A. E.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. (to be published).
[PubMed]

Noginov, M. A.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95(15), 151102 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

Noginova, N.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

Orloff, N.

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[CrossRef]

Ozbay, E.

K. Boratay Alici and E. Ozbay, “Low-temperature behavior of magnetic metamaterial elements,” N. J. Phys. 11(4), 043015 (2009).
[CrossRef]

Papasimakis, N.

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photonics News 20(10), 22 (2009).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. (to be published).
[PubMed]

Pendry, J. B.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, “A d.c. magnetic metamaterial,” Nat. Mater. 7(4), 295–297 (2008).
[CrossRef] [PubMed]

Perkins, G.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, “A d.c. magnetic metamaterial,” Nat. Mater. 7(4), 295–297 (2008).
[CrossRef] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Plum, E.

Podolskiy, V. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Ricci, M.

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[CrossRef]

Ritzo, B. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

Rockstuhl, C.

R. Singh, Z. Tian, J. G. Han, C. Rockstuhl, J. Q. Gu, and W. L. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[CrossRef]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Sámson, Z. L.

Z. L. Sámson, K. F. MacDonald, F. DeAngelis, B. Gholipour, K. Knight, C. C. Huang, E. DiFabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[CrossRef]

Schneider, R.

R. Schwab, E. Gaganidze, J. Halbritter, R. Heidinger, R. Aidam, and R. Schneider, “YBCO wafer qualification by surface resistance measurements combined with performance studies of microstrip resonators,” J. Phys. C. Superconduct. Appl. 351, 25–28 (2001).
[CrossRef]

Schwab, R.

R. Schwab, E. Gaganidze, J. Halbritter, R. Heidinger, R. Aidam, and R. Schneider, “YBCO wafer qualification by surface resistance measurements combined with performance studies of microstrip resonators,” J. Phys. C. Superconduct. Appl. 351, 25–28 (2001).
[CrossRef]

Singh, R.

R. Singh, Z. Tian, J. G. Han, C. Rockstuhl, J. Q. Gu, and W. L. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[CrossRef]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 9 (to be published).
[PubMed]

Soukoulis, C. M.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[CrossRef] [PubMed]

Talvacchio, J.

J. Talvacchio, M. G. Forrester, J. R. Gavaler, and T. T. Braggins, “Large-area YBCO films for microwave applications,” IEEE Trans. Magn. 27(2), 978–981 (1991).
[CrossRef]

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[CrossRef] [PubMed]

Tian, Z.

R. Singh, Z. Tian, J. G. Han, C. Rockstuhl, J. Q. Gu, and W. L. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

Tsai, D. P.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 9 (to be published).
[PubMed]

Wiltshire, M. C. K.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, “A d.c. magnetic metamaterial,” Nat. Mater. 7(4), 295–297 (2008).
[CrossRef] [PubMed]

Wood, B.

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, “A d.c. magnetic metamaterial,” Nat. Mater. 7(4), 295–297 (2008).
[CrossRef] [PubMed]

Zhang, L.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, W. L.

R. Singh, Z. Tian, J. G. Han, C. Rockstuhl, J. Q. Gu, and W. L. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[CrossRef]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Zheludev, N. I.

Z. L. Sámson, K. F. MacDonald, F. DeAngelis, B. Gholipour, K. Knight, C. C. Huang, E. DiFabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[CrossRef]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photonics News 20(10), 22 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. (to be published).
[PubMed]

Zhu, G.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95(15), 151102 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett. 95(15), 151102 (2009).
[CrossRef]

R. Singh, Z. Tian, J. G. Han, C. Rockstuhl, J. Q. Gu, and W. L. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

M. Ricci, N. Orloff, and S. M. Anlage, “Superconducting metamaterials,” Appl. Phys. Lett. 87(3), 034102 (2005).
[CrossRef]

Z. L. Sámson, K. F. MacDonald, F. DeAngelis, B. Gholipour, K. Knight, C. C. Huang, E. DiFabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[CrossRef]

IEEE Trans. Magn. (1)

J. Talvacchio, M. G. Forrester, J. R. Gavaler, and T. T. Braggins, “Large-area YBCO films for microwave applications,” IEEE Trans. Magn. 27(2), 978–981 (1991).
[CrossRef]

J. Phys. C. Superconduct. Appl. (1)

R. Schwab, E. Gaganidze, J. Halbritter, R. Heidinger, R. Aidam, and R. Schneider, “YBCO wafer qualification by surface resistance measurements combined with performance studies of microstrip resonators,” J. Phys. C. Superconduct. Appl. 351, 25–28 (2001).
[CrossRef]

N. J. Phys. (1)

K. Boratay Alici and E. Ozbay, “Low-temperature behavior of magnetic metamaterial elements,” N. J. Phys. 11(4), 043015 (2009).
[CrossRef]

Nano Lett. (1)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 9 (to be published).
[PubMed]

Nat. Mater. (2)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, “A d.c. magnetic metamaterial,” Nat. Mater. 7(4), 295–297 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Photonics News (1)

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photonics News 20(10), 22 (2009).
[CrossRef]

Phys. Rev. B (1)

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[CrossRef]

Phys. Rev. Lett. (6)

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett. (to be published).
[PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

N. Klein, “High-frequency applications of high-temperature superconductor thin films,” Rep. Prog. Phys. 65(10), 1387–1425 (2002).
[CrossRef]

Other (4)

A. Tsiatmas, R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. de Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” arXiv:1004.0729.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of meta-molecules,” arXiv: 0908.2533.

T. Van Duzer, and C. W. Turner, Principles of Superconducting Devices and Circuits (Elsevier, New York, 1981).

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” arXiv:0902.3014v4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Superconducting metamaterials. Panels (a) and (b) show photographs of correspondingly negative and positive forms of asymmetrically-split ring metamaterial. Dashed box indicates the metamaterial’s unit cell.

Fig. 2
Fig. 2

Changes in transmission spectra of superconducting YBCO metamaterials relative to their room temperature state. Panels (a) and (b) present experimentally measured data for positive and negative metamaterial designs respectively, while panels (c) and (d) show corresponding results of numerical simulations.

Fig. 3
Fig. 3

Change of transmission measured at 84 GHz as a function of temperature for negative superconducting YBCO metamaterial (relative to its room temperature state). Experimental data is presented by red dots, while black curve provides guide for eye.

Metrics