Abstract

We have prepared and studied the PbF2:(Yb3+,Er3+) co-doped nanoparticles, with chemical formula (Yb-Er)xPb1-xF2+x, where x = 0.29, Yb3+/Er3+ = 6, and estimated the energy efficiency for their cathodoluminescence, mostly of Yb3+, and up-conversion photoluminescence of Er3+ to reach more than 0.5% and 20%, respectively, which may be the highest to date for rare-earth doped nanoparticles. Electron beam induced temperature rise in the nanoparticles has been estimated by measuring the ratio of green emission bands of Er3+. These high efficiencies are due to high doping level of nanoparticles and due to low phonon energy of the PbF2 host.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
    [CrossRef] [PubMed]
  2. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009).
    [CrossRef] [PubMed]
  3. H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
    [CrossRef]
  4. P. Salas, C. Angeles-Chavez, J. A. Montoya, E. De la Rosa, L. A. Diaz-Torres, H. Desirena, A. Martinez, M. A. Romero-Romo, and J. Morales, “Synthesis, characterization and luminescence properties of ZrO2:Yb3+-Er3+ nanophosphor,” Opt. Mater. 27(7), 1295–1300 (2005).
    [CrossRef]
  5. D. Matsuura, “Red, green and blue up-conversion luminescence of trivalent rare earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
    [CrossRef]
  6. J. Zhang, Y. Fu, and J. R. Lakowicz, “Luminescent images of single gold nanoparticles and their labeling on silica beads,” Opt. Express 15(20), 13415–13420 (2007).
    [CrossRef] [PubMed]
  7. J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano Lett. 2(5), 465–469 (2002).
    [CrossRef]
  8. E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
    [CrossRef]
  9. V. K. Tikhomirov, K. Driesen, V. D. Rodriguez, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles,” Opt. Express 17(14), 11794–11798 (2009).
    [CrossRef] [PubMed]
  10. V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er(3+)-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9(2), 721–724 (2009).
    [CrossRef] [PubMed]
  11. M. Mortier and G. Patriarche, “Oxide glass used as inorganic template for fluorescent fluoride nano-particle synthesis,” Opt. Mater. 28(12), 1401–1404 (2006).
    [CrossRef]
  12. Z.-L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln3+ (La=Eu3+, Ce3+, Tb3+) spherical particles,” Appl. Phys. Lett. 93, 141106 (2008).
    [CrossRef]
  13. J. Hao, S. A. Studenkin, and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis,” J. Lumin. 93(4), 313–319 (2001).
    [CrossRef]
  14. N. Rakov, F. E. Ramos, G. Hirata, and M. Xiao, “Strong photoluminescence and cathodoluminescence due to f-f transitions in Eu3+-doped powders prepared by direct combustion synthesis and thin films deposited by laser ablation,” Appl. Phys. Lett. 83(2), 272–274 (2003).
    [CrossRef]
  15. L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
    [CrossRef]
  16. T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1–2), 77–80 (2008).
    [CrossRef]
  17. T. Welker, “Recent developments on phosphors for fluorescent lamps and cathode-ray tubes,” J. Lumin. 48–49, 49–56 (1991).
    [CrossRef]
  18. G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. J. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
    [CrossRef] [PubMed]
  19. F. Auzel, “Up-conversion and anti-Stokes processes with d and f ions in solids,” Chem. Rev. 105(1), 139–174 (2004).
    [CrossRef]
  20. V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb(3+)-Er(3+)-Tm(3+) co-doped nano-glassceramics,” Opt. Express 15(15), 9535–9540 (2007).
    [CrossRef] [PubMed]
  21. V. K. Tikhomirov, D. Furniss, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
    [CrossRef]
  22. V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
    [CrossRef] [PubMed]
  23. V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, and A. B. Seddon, “The shape of the 1.55 μm emission band of the Er3+ dopant in oxyfluoride nano-scaled glass-ceramics,” Europhys. Lett. 69(1), 128–134 (2005).
    [CrossRef]
  24. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localised random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
    [CrossRef]
  25. J. F. Suyver, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
    [CrossRef]
  26. D. J. M. Bevan, J. Strähle, and O. Greis, “The crystal-structure of tveitite, an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
    [CrossRef]
  27. S. Hull, “Superionic crystal structures and conduction processes,” Rep. Prog. Phys. 67(7), 1233–1314 (2004).
    [CrossRef]

2009 (6)

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009).
[CrossRef] [PubMed]

V. K. Tikhomirov, K. Driesen, V. D. Rodriguez, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles,” Opt. Express 17(14), 11794–11798 (2009).
[CrossRef] [PubMed]

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er(3+)-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9(2), 721–724 (2009).
[CrossRef] [PubMed]

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. J. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[CrossRef] [PubMed]

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef] [PubMed]

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localised random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

2008 (2)

Z.-L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln3+ (La=Eu3+, Ce3+, Tb3+) spherical particles,” Appl. Phys. Lett. 93, 141106 (2008).
[CrossRef]

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1–2), 77–80 (2008).
[CrossRef]

2007 (4)

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

J. Zhang, Y. Fu, and J. R. Lakowicz, “Luminescent images of single gold nanoparticles and their labeling on silica beads,” Opt. Express 15(20), 13415–13420 (2007).
[CrossRef] [PubMed]

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb(3+)-Er(3+)-Tm(3+) co-doped nano-glassceramics,” Opt. Express 15(15), 9535–9540 (2007).
[CrossRef] [PubMed]

2006 (2)

J. F. Suyver, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

M. Mortier and G. Patriarche, “Oxide glass used as inorganic template for fluorescent fluoride nano-particle synthesis,” Opt. Mater. 28(12), 1401–1404 (2006).
[CrossRef]

2005 (3)

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

P. Salas, C. Angeles-Chavez, J. A. Montoya, E. De la Rosa, L. A. Diaz-Torres, H. Desirena, A. Martinez, M. A. Romero-Romo, and J. Morales, “Synthesis, characterization and luminescence properties of ZrO2:Yb3+-Er3+ nanophosphor,” Opt. Mater. 27(7), 1295–1300 (2005).
[CrossRef]

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, and A. B. Seddon, “The shape of the 1.55 μm emission band of the Er3+ dopant in oxyfluoride nano-scaled glass-ceramics,” Europhys. Lett. 69(1), 128–134 (2005).
[CrossRef]

2004 (3)

F. Auzel, “Up-conversion and anti-Stokes processes with d and f ions in solids,” Chem. Rev. 105(1), 139–174 (2004).
[CrossRef]

S. Hull, “Superionic crystal structures and conduction processes,” Rep. Prog. Phys. 67(7), 1233–1314 (2004).
[CrossRef]

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[CrossRef]

2003 (1)

N. Rakov, F. E. Ramos, G. Hirata, and M. Xiao, “Strong photoluminescence and cathodoluminescence due to f-f transitions in Eu3+-doped powders prepared by direct combustion synthesis and thin films deposited by laser ablation,” Appl. Phys. Lett. 83(2), 272–274 (2003).
[CrossRef]

2002 (3)

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano Lett. 2(5), 465–469 (2002).
[CrossRef]

D. Matsuura, “Red, green and blue up-conversion luminescence of trivalent rare earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
[CrossRef]

V. K. Tikhomirov, D. Furniss, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

2001 (1)

J. Hao, S. A. Studenkin, and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis,” J. Lumin. 93(4), 313–319 (2001).
[CrossRef]

1991 (1)

T. Welker, “Recent developments on phosphors for fluorescent lamps and cathode-ray tubes,” J. Lumin. 48–49, 49–56 (1991).
[CrossRef]

1982 (1)

D. J. M. Bevan, J. Strähle, and O. Greis, “The crystal-structure of tveitite, an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

Adamo, G.

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. J. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[CrossRef] [PubMed]

Aigouy, L.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

Alexandrou, A.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[CrossRef]

Angeles-Chavez, C.

P. Salas, C. Angeles-Chavez, J. A. Montoya, E. De la Rosa, L. A. Diaz-Torres, H. Desirena, A. Martinez, M. A. Romero-Romo, and J. Morales, “Synthesis, characterization and luminescence properties of ZrO2:Yb3+-Er3+ nanophosphor,” Opt. Mater. 27(7), 1295–1300 (2005).
[CrossRef]

Auzel, F.

F. Auzel, “Up-conversion and anti-Stokes processes with d and f ions in solids,” Chem. Rev. 105(1), 139–174 (2004).
[CrossRef]

Beaurepaire, E.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[CrossRef]

Beggiora, M.

V. K. Tikhomirov, D. Furniss, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Bevan, D. J. M.

D. J. M. Bevan, J. Strähle, and O. Greis, “The crystal-structure of tveitite, an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

Biner, D.

J. F. Suyver, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

Boilot, J.-P.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[CrossRef]

Buissette, V.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[CrossRef]

Casanova, D.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[CrossRef]

Chan, H. L. W.

Z.-L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln3+ (La=Eu3+, Ce3+, Tb3+) spherical particles,” Appl. Phys. Lett. 93, 141106 (2008).
[CrossRef]

Charlot, B.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

Chibotaru, L. F.

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er(3+)-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9(2), 721–724 (2009).
[CrossRef] [PubMed]

Cocivera, M.

J. Hao, S. A. Studenkin, and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis,” J. Lumin. 93(4), 313–319 (2001).
[CrossRef]

de Abajo, F. J.

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. J. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[CrossRef] [PubMed]

De la Rosa, E.

P. Salas, C. Angeles-Chavez, J. A. Montoya, E. De la Rosa, L. A. Diaz-Torres, H. Desirena, A. Martinez, M. A. Romero-Romo, and J. Morales, “Synthesis, characterization and luminescence properties of ZrO2:Yb3+-Er3+ nanophosphor,” Opt. Mater. 27(7), 1295–1300 (2005).
[CrossRef]

del-Castillo, J.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef] [PubMed]

Desirena, H.

P. Salas, C. Angeles-Chavez, J. A. Montoya, E. De la Rosa, L. A. Diaz-Torres, H. Desirena, A. Martinez, M. A. Romero-Romo, and J. Morales, “Synthesis, characterization and luminescence properties of ZrO2:Yb3+-Er3+ nanophosphor,” Opt. Mater. 27(7), 1295–1300 (2005).
[CrossRef]

Diaz-Torres, L. A.

P. Salas, C. Angeles-Chavez, J. A. Montoya, E. De la Rosa, L. A. Diaz-Torres, H. Desirena, A. Martinez, M. A. Romero-Romo, and J. Morales, “Synthesis, characterization and luminescence properties of ZrO2:Yb3+-Er3+ nanophosphor,” Opt. Mater. 27(7), 1295–1300 (2005).
[CrossRef]

Dietz, R. J. B.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localised random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Driesen, K.

Fallert, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localised random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Fedotov, V. A.

Ferrari, M.

V. K. Tikhomirov, D. Furniss, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Fu, Y.

Fu, Y. H.

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. J. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[CrossRef] [PubMed]

Furniss, D.

V. K. Tikhomirov, D. Furniss, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Gacoin, T.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[CrossRef]

Giaume, D.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[CrossRef]

Görller-Walrand, C.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef] [PubMed]

V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb(3+)-Er(3+)-Tm(3+) co-doped nano-glassceramics,” Opt. Express 15(15), 9535–9540 (2007).
[CrossRef] [PubMed]

Gredin, P.

V. K. Tikhomirov, K. Driesen, V. D. Rodriguez, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles,” Opt. Express 17(14), 11794–11798 (2009).
[CrossRef] [PubMed]

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er(3+)-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9(2), 721–724 (2009).
[CrossRef] [PubMed]

Greis, O.

D. J. M. Bevan, J. Strähle, and O. Greis, “The crystal-structure of tveitite, an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

Güdel, H. U.

J. F. Suyver, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

Hao, J.

J. Hao, S. A. Studenkin, and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis,” J. Lumin. 93(4), 313–319 (2001).
[CrossRef]

Hao, J. H.

Z.-L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln3+ (La=Eu3+, Ce3+, Tb3+) spherical particles,” Appl. Phys. Lett. 93, 141106 (2008).
[CrossRef]

Hauschild, R.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Hayakawa, M.

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1–2), 77–80 (2008).
[CrossRef]

Hayakawa, T.

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1–2), 77–80 (2008).
[CrossRef]

Hirata, G.

N. Rakov, F. E. Ramos, G. Hirata, and M. Xiao, “Strong photoluminescence and cathodoluminescence due to f-f transitions in Eu3+-doped powders prepared by direct combustion synthesis and thin films deposited by laser ablation,” Appl. Phys. Lett. 83(2), 272–274 (2003).
[CrossRef]

Hugonin, J. P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Huignard, A.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[CrossRef]

Hull, S.

S. Hull, “Superionic crystal structures and conduction processes,” Rep. Prog. Phys. 67(7), 1233–1314 (2004).
[CrossRef]

Julié, G.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Kalt, H.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localised random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Klingshirn, C.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localised random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Krämer, K. W.

J. F. Suyver, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

Kuo, P.

Lahlil, K.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[CrossRef]

Lakowicz, J. R.

Lalanne, P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Li, H.-L.

Z.-L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln3+ (La=Eu3+, Ce3+, Tb3+) spherical particles,” Appl. Phys. Lett. 93, 141106 (2008).
[CrossRef]

MacDonald, K. F.

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. J. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[CrossRef] [PubMed]

Martin, J.-L.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[CrossRef]

Martinez, A.

P. Salas, C. Angeles-Chavez, J. A. Montoya, E. De la Rosa, L. A. Diaz-Torres, H. Desirena, A. Martinez, M. A. Romero-Romo, and J. Morales, “Synthesis, characterization and luminescence properties of ZrO2:Yb3+-Er3+ nanophosphor,” Opt. Mater. 27(7), 1295–1300 (2005).
[CrossRef]

Mathet, V.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Matsuura, D.

D. Matsuura, “Red, green and blue up-conversion luminescence of trivalent rare earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
[CrossRef]

Méndez-Ramos, J.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef] [PubMed]

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, and A. B. Seddon, “The shape of the 1.55 μm emission band of the Er3+ dopant in oxyfluoride nano-scaled glass-ceramics,” Europhys. Lett. 69(1), 128–134 (2005).
[CrossRef]

Mercuri, A.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[CrossRef]

Mock, J. J.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano Lett. 2(5), 465–469 (2002).
[CrossRef]

Montagna, M.

V. K. Tikhomirov, D. Furniss, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Montoya, J. A.

P. Salas, C. Angeles-Chavez, J. A. Montoya, E. De la Rosa, L. A. Diaz-Torres, H. Desirena, A. Martinez, M. A. Romero-Romo, and J. Morales, “Synthesis, characterization and luminescence properties of ZrO2:Yb3+-Er3+ nanophosphor,” Opt. Mater. 27(7), 1295–1300 (2005).
[CrossRef]

Morales, J.

P. Salas, C. Angeles-Chavez, J. A. Montoya, E. De la Rosa, L. A. Diaz-Torres, H. Desirena, A. Martinez, M. A. Romero-Romo, and J. Morales, “Synthesis, characterization and luminescence properties of ZrO2:Yb3+-Er3+ nanophosphor,” Opt. Mater. 27(7), 1295–1300 (2005).
[CrossRef]

Mortier, M.

V. K. Tikhomirov, K. Driesen, V. D. Rodriguez, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles,” Opt. Express 17(14), 11794–11798 (2009).
[CrossRef] [PubMed]

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er(3+)-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9(2), 721–724 (2009).
[CrossRef] [PubMed]

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb(3+)-Er(3+)-Tm(3+) co-doped nano-glassceramics,” Opt. Express 15(15), 9535–9540 (2007).
[CrossRef] [PubMed]

M. Mortier and G. Patriarche, “Oxide glass used as inorganic template for fluorescent fluoride nano-particle synthesis,” Opt. Mater. 28(12), 1401–1404 (2006).
[CrossRef]

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

Moshchalkov, V. V.

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er(3+)-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9(2), 721–724 (2009).
[CrossRef] [PubMed]

V. K. Tikhomirov, K. Driesen, V. D. Rodriguez, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles,” Opt. Express 17(14), 11794–11798 (2009).
[CrossRef] [PubMed]

Nogami, M.

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1–2), 77–80 (2008).
[CrossRef]

Oldenburg, S. J.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano Lett. 2(5), 465–469 (2002).
[CrossRef]

Patriarche, G.

M. Mortier and G. Patriarche, “Oxide glass used as inorganic template for fluorescent fluoride nano-particle synthesis,” Opt. Mater. 28(12), 1401–1404 (2006).
[CrossRef]

Plum, E.

Rakov, N.

N. Rakov, F. E. Ramos, G. Hirata, and M. Xiao, “Strong photoluminescence and cathodoluminescence due to f-f transitions in Eu3+-doped powders prepared by direct combustion synthesis and thin films deposited by laser ablation,” Appl. Phys. Lett. 83(2), 272–274 (2003).
[CrossRef]

Ramos, F. E.

N. Rakov, F. E. Ramos, G. Hirata, and M. Xiao, “Strong photoluminescence and cathodoluminescence due to f-f transitions in Eu3+-doped powders prepared by direct combustion synthesis and thin films deposited by laser ablation,” Appl. Phys. Lett. 83(2), 272–274 (2003).
[CrossRef]

Reaney, I. M.

V. K. Tikhomirov, D. Furniss, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Rodriguez, V. D.

Rodríguez, V. D.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef] [PubMed]

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, and A. B. Seddon, “The shape of the 1.55 μm emission band of the Er3+ dopant in oxyfluoride nano-scaled glass-ceramics,” Europhys. Lett. 69(1), 128–134 (2005).
[CrossRef]

Rolli, R.

V. K. Tikhomirov, D. Furniss, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Romero-Romo, M. A.

P. Salas, C. Angeles-Chavez, J. A. Montoya, E. De la Rosa, L. A. Diaz-Torres, H. Desirena, A. Martinez, M. A. Romero-Romo, and J. Morales, “Synthesis, characterization and luminescence properties of ZrO2:Yb3+-Er3+ nanophosphor,” Opt. Mater. 27(7), 1295–1300 (2005).
[CrossRef]

Salas, P.

P. Salas, C. Angeles-Chavez, J. A. Montoya, E. De la Rosa, L. A. Diaz-Torres, H. Desirena, A. Martinez, M. A. Romero-Romo, and J. Morales, “Synthesis, characterization and luminescence properties of ZrO2:Yb3+-Er3+ nanophosphor,” Opt. Mater. 27(7), 1295–1300 (2005).
[CrossRef]

Sartor, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localised random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Saurel, D.

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er(3+)-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9(2), 721–724 (2009).
[CrossRef] [PubMed]

Sauviat, M.-P.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[CrossRef]

Schneider, D.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localised random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Schultz, D. A.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano Lett. 2(5), 465–469 (2002).
[CrossRef]

Schultz, S.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano Lett. 2(5), 465–469 (2002).
[CrossRef]

Seddon, A. B.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, and A. B. Seddon, “The shape of the 1.55 μm emission band of the Er3+ dopant in oxyfluoride nano-scaled glass-ceramics,” Europhys. Lett. 69(1), 128–134 (2005).
[CrossRef]

Smith, D. R.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano Lett. 2(5), 465–469 (2002).
[CrossRef]

Stelzl, F.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Strähle, J.

D. J. M. Bevan, J. Strähle, and O. Greis, “The crystal-structure of tveitite, an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

Studenkin, S. A.

J. Hao, S. A. Studenkin, and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis,” J. Lumin. 93(4), 313–319 (2001).
[CrossRef]

Suyver, J. F.

J. F. Suyver, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

Tessier, G.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

Tikhomirov, V. K.

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er(3+)-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9(2), 721–724 (2009).
[CrossRef] [PubMed]

V. K. Tikhomirov, K. Driesen, V. D. Rodriguez, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles,” Opt. Express 17(14), 11794–11798 (2009).
[CrossRef] [PubMed]

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef] [PubMed]

V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb(3+)-Er(3+)-Tm(3+) co-doped nano-glassceramics,” Opt. Express 15(15), 9535–9540 (2007).
[CrossRef] [PubMed]

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, and A. B. Seddon, “The shape of the 1.55 μm emission band of the Er3+ dopant in oxyfluoride nano-scaled glass-ceramics,” Europhys. Lett. 69(1), 128–134 (2005).
[CrossRef]

V. K. Tikhomirov, D. Furniss, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Tsai, D. P.

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. J. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009).
[CrossRef] [PubMed]

van Veen, M. K.

J. F. Suyver, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

Wang, C. M.

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. J. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[CrossRef] [PubMed]

Wang, Z.-L.

Z.-L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln3+ (La=Eu3+, Ce3+, Tb3+) spherical particles,” Appl. Phys. Lett. 93, 141106 (2008).
[CrossRef]

Welker, T.

T. Welker, “Recent developments on phosphors for fluorescent lamps and cathode-ray tubes,” J. Lumin. 48–49, 49–56 (1991).
[CrossRef]

Wissinger, M.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Xiao, M.

N. Rakov, F. E. Ramos, G. Hirata, and M. Xiao, “Strong photoluminescence and cathodoluminescence due to f-f transitions in Eu3+-doped powders prepared by direct combustion synthesis and thin films deposited by laser ablation,” Appl. Phys. Lett. 83(2), 272–274 (2003).
[CrossRef]

Zhang, J.

Zheludev, N. I.

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009).
[CrossRef] [PubMed]

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. J. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[CrossRef] [PubMed]

Zhou, H.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Appl. Phys. Lett. (6)

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

D. Matsuura, “Red, green and blue up-conversion luminescence of trivalent rare earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
[CrossRef]

Z.-L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln3+ (La=Eu3+, Ce3+, Tb3+) spherical particles,” Appl. Phys. Lett. 93, 141106 (2008).
[CrossRef]

N. Rakov, F. E. Ramos, G. Hirata, and M. Xiao, “Strong photoluminescence and cathodoluminescence due to f-f transitions in Eu3+-doped powders prepared by direct combustion synthesis and thin films deposited by laser ablation,” Appl. Phys. Lett. 83(2), 272–274 (2003).
[CrossRef]

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

V. K. Tikhomirov, D. Furniss, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Chem. Rev. (1)

F. Auzel, “Up-conversion and anti-Stokes processes with d and f ions in solids,” Chem. Rev. 105(1), 139–174 (2004).
[CrossRef]

Europhys. Lett. (1)

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, and A. B. Seddon, “The shape of the 1.55 μm emission band of the Er3+ dopant in oxyfluoride nano-scaled glass-ceramics,” Europhys. Lett. 69(1), 128–134 (2005).
[CrossRef]

J. Alloy. Comp. (1)

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1–2), 77–80 (2008).
[CrossRef]

J. Lumin. (3)

T. Welker, “Recent developments on phosphors for fluorescent lamps and cathode-ray tubes,” J. Lumin. 48–49, 49–56 (1991).
[CrossRef]

J. Hao, S. A. Studenkin, and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis,” J. Lumin. 93(4), 313–319 (2001).
[CrossRef]

J. F. Suyver, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef] [PubMed]

J. Solid State Chem. (1)

D. J. M. Bevan, J. Strähle, and O. Greis, “The crystal-structure of tveitite, an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

Nano Lett. (3)

V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Er(3+)-doped nanoparticles for optical detection of magnetic field,” Nano Lett. 9(2), 721–724 (2009).
[CrossRef] [PubMed]

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano Lett. 2(5), 465–469 (2002).
[CrossRef]

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[CrossRef]

Nat. Photonics (1)

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localised random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Opt. Express (4)

Opt. Mater. (2)

P. Salas, C. Angeles-Chavez, J. A. Montoya, E. De la Rosa, L. A. Diaz-Torres, H. Desirena, A. Martinez, M. A. Romero-Romo, and J. Morales, “Synthesis, characterization and luminescence properties of ZrO2:Yb3+-Er3+ nanophosphor,” Opt. Mater. 27(7), 1295–1300 (2005).
[CrossRef]

M. Mortier and G. Patriarche, “Oxide glass used as inorganic template for fluorescent fluoride nano-particle synthesis,” Opt. Mater. 28(12), 1401–1404 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

G. Adamo, K. F. MacDonald, Y. H. Fu, C. M. Wang, D. P. Tsai, F. J. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett. 103(11), 113901 (2009).
[CrossRef] [PubMed]

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

S. Hull, “Superionic crystal structures and conduction processes,” Rep. Prog. Phys. 67(7), 1233–1314 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a,b,c,d) TEM images of nanoparticles with different spatial resolution. Black round spots of about 8 nm diameter are the nanoparticles comprising the aggregates/nanopowder. e) TEM image of single nanoparticle, where crystalline planes (1,1,1) of β-PbF2 are indicated. f) Electron diffraction pattern taken from nanopowder, where the diffraction rings from certain planes of the β-PbF2 are indicated.

Fig. 2
Fig. 2

Cathodoluminescence spectra of Yb3+-Er3+ co-doped nanopowder normalized to emission band at 650 nm. Insert shows expanded area between 450 to 725 nm. CCD detector operates in spectral range between 450 to 1000 nm; therefore emission band of Yb3+ about 1000 nm is approximated above 1000 nm by the corresponding photoluminescence band (black curve) of the same nanoparticles excited via Er3+ co-dopant at 650 nm. Emission transitions are postsigned according to energy level diagram in Fig. 3.

Fig. 3
Fig. 3

Energy level diagram of Yb3+ and Er3+. The down-headed arrows indicate transitions postsigned in spectra of Figs. 2 and 4, respectively.

Fig. 4
Fig. 4

Photoluminescence spectra of Yb3+-Er3+ co-doped nanopowder excited at indicated pump powers and wavelength of the laser diode into absorption band 2F7/22F5/2 of Yb3+. The up-conversion luminescence parts corresponding to 2- and 3-photon processes are multiplied by factor of 2 and 3, respectively.

Fig. 5
Fig. 5

Image of illuminated spot on the surface of Yb3+-Er3+ co-doped nanopowder layer spread between microscope slides. Black square in the center has size 42 × 42 μm.

Fig. 6
Fig. 6

Photoluminescence spectra of bulk Yb3+-Er3+ co-doped glass-ceramics excited at 50 W/cm2 pump power and wavelength 980 nm of the laser diode into absorption band 2F7/22F5/2 of Yb3+. The up-conversion luminescence parts corresponding to 2- and 3-photon processes are multiplied by factor of 2 and 3, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ln ( I H I S ) = C B T
1 τ exp = W n r n ( T ) + 1 τ r a d
W n r n ( T ) = W n r n ( 0 ) × [ 1 exp ( ω k T ) ] n

Metrics