Abstract

We propose a new configuration for a fully metal coated scanning near field (SNOM) probe based on asymmetric corrugations in the metal coating. The variation in the metal surface induces coupling mechanisms leading to the creation of a localized hot spot under linearly polarized excitation. Field localization is an effect of paramount importance for resolution but cannot be achieved with standard axisymmetric fully metal-coated probes, unless a more cumbersome radially polarized excitation is used. Our simulations show that this promising structure allows one to simplify the mode injection procedures circumventing the need for a radially polarized beam.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Hecht, B. Sick, U. Wild, V. Deckert, R. Zenobi, O. Martin, and D. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
    [CrossRef]
  2. L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  3. L. Novotny, Progress in Optics, 50, (Elsevier, 2007), Chap. 5.
  4. D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
    [CrossRef]
  5. A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984).
    [CrossRef]
  6. L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
    [CrossRef] [PubMed]
  7. L. Liu and S. He, “Design of metal-cladded near-field fiber probes with a dispersive body-of-revolution finite-difference time-domain method,” Appl. Opt. 44(17), 3429–3437 (2005).
    [CrossRef] [PubMed]
  8. W. Nakagawa, L. Vaccaro, and H. P. Herzig, “Analysis of mode coupling due to spherical defects in ideal fully metal-coated scanning near-field optical microscopy probes,” J. Opt. Soc. Am. A 23(5), 1096–1105 (2006).
    [CrossRef]
  9. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(063822), 10 (2007).
    [CrossRef]
  10. H. G. Frey, C. Bolwien, A. Brandenburg, R. Ros, and D. Anselmetti, “Optimized apertureless optical near-field probes with 15 nm optical resolution,” Nanotechnology 17(13), 3105–3110 (2006).
    [CrossRef]
  11. L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
    [CrossRef]
  12. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, T. Scharf, and H. P. Herzig, “On the coupling and transmission of transverse and longitudinal fields into fully metal-coated optical nano-probes,” Proc. SPIE 5736, 96–104 (2005).
    [CrossRef]
  13. P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107(2-3), 158–165 (2007).
    [CrossRef]
  14. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
    [CrossRef]
  15. W. Chen and Q. Zhan, “Field enhancement analysis of an apertureless near field scanning optical microscope probe with finite element method,” Chin. Opt. Lett. 5, 709–711 (2007).
  16. W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15(7), 4106–4111 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-7-4106 .
    [CrossRef] [PubMed]
  17. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(Pt 3), 220–224 (2003).
    [CrossRef] [PubMed]
  18. A. E. Babayan and KhV. Nerkararyan, “The strong localization of surface plasmon polariton on a metal-coated tip of optical fiber,” Ultramicroscopy 107(12), 1136–1140 (2007).
    [CrossRef] [PubMed]
  19. T. Abrahamyan and K. V. Nerkararyan, “Surface plasmon resonance on vicinity of gold-coated fiber tip,” Phys. Lett. A 364(6), 494–496 (2007).
    [CrossRef]
  20. K. Nerkararyan, T. Abrahamyan, E. Janunts, R. Khachatryan, and S. Harutyunyan, “Excitation and propagation of surface plasmon polaritons on the gold covered conical tip,” Phys. Lett. A 350(1-2), 147–149 (2006).
    [CrossRef]
  21. W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).
  22. V. Lotito, U. Sennhauser, and C. Hafner, “Finite element analysis of asymmetric scanning near field optical microscopy probes,” J. Comput. Theor. Nanosci. (to be published).
  23. M. C. Quong and A. Y. Elezzabi, “Offset-apertured near-field scanning optical microscope probes,” Opt. Express 15(16), 10163–10174 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-10163 .
    [CrossRef] [PubMed]
  24. T. J. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15(17), 10920–10928 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-17-10920 .
    [CrossRef] [PubMed]
  25. T. J. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16(4), 451–457 (2008).
    [CrossRef]
  26. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
    [CrossRef] [PubMed]
  27. C. Ropers, C. C. Neacsu, M. B. Raschke, M. Albrecht, C. Lienau, and T. Elsaesser, “Light confinement at ultrasharp metallic tips,” Jpn. J. Appl. Phys. 47(7), 6051–6054 (2008).
    [CrossRef]
  28. F. I. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4(1), 51–59 (2009).
    [CrossRef]
  29. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(176805), 4 (2006).
    [CrossRef]
  30. L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-5-3326 .
    [CrossRef] [PubMed]
  31. L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008).
    [CrossRef]
  32. J. J. Wu, T. J. Yang, and L. F. Shen, “Subwavelength microwave guiding by a periodically corrugated metal wire,” J. Electromagn. Waves Appl. 23(1), 11–19 (2009).
    [CrossRef]
  33. O. J. F. Martin and M. Paulus, “Influence of metal roughness on the near-field generated by an aperture/apertureless probe,” J. Microsc. 205(Pt 2), 147–152 (2002).
    [CrossRef] [PubMed]
  34. T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal-dielectric probe,” Opt. Express 17(11), 9191–9196 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-11-9191 .
    [CrossRef] [PubMed]
  35. N. A. Janunts and K. V. Nerkararyan, “Modulation of light radiation during input into a waveguide by resonance excitation of surface plasmons,” Appl. Phys. Lett. 79(3), 299–301 (2001).
    [CrossRef]
  36. C. Themistos, B. M. Azimur Rahman, M. Rajarajan, V. Rakocevic, and K. T. V. Grattan, “Finite element solutions of surface-plasmon modes in metal-clad dielectric waveguides at THz frequency,” IEEE J. Lightwave Technol. 24(12), 5111–5118 (2006).
    [CrossRef]

2009

F. I. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4(1), 51–59 (2009).
[CrossRef]

J. J. Wu, T. J. Yang, and L. F. Shen, “Subwavelength microwave guiding by a periodically corrugated metal wire,” J. Electromagn. Waves Appl. 23(1), 11–19 (2009).
[CrossRef]

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal-dielectric probe,” Opt. Express 17(11), 9191–9196 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-11-9191 .
[CrossRef] [PubMed]

2008

C. Ropers, C. C. Neacsu, M. B. Raschke, M. Albrecht, C. Lienau, and T. Elsaesser, “Light confinement at ultrasharp metallic tips,” Jpn. J. Appl. Phys. 47(7), 6051–6054 (2008).
[CrossRef]

L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-5-3326 .
[CrossRef] [PubMed]

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008).
[CrossRef]

T. J. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16(4), 451–457 (2008).
[CrossRef]

2007

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(063822), 10 (2007).
[CrossRef]

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107(2-3), 158–165 (2007).
[CrossRef]

W. Chen and Q. Zhan, “Field enhancement analysis of an apertureless near field scanning optical microscope probe with finite element method,” Chin. Opt. Lett. 5, 709–711 (2007).

W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15(7), 4106–4111 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-7-4106 .
[CrossRef] [PubMed]

A. E. Babayan and KhV. Nerkararyan, “The strong localization of surface plasmon polariton on a metal-coated tip of optical fiber,” Ultramicroscopy 107(12), 1136–1140 (2007).
[CrossRef] [PubMed]

T. Abrahamyan and K. V. Nerkararyan, “Surface plasmon resonance on vicinity of gold-coated fiber tip,” Phys. Lett. A 364(6), 494–496 (2007).
[CrossRef]

W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).

M. C. Quong and A. Y. Elezzabi, “Offset-apertured near-field scanning optical microscope probes,” Opt. Express 15(16), 10163–10174 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-10163 .
[CrossRef] [PubMed]

T. J. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15(17), 10920–10928 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-17-10920 .
[CrossRef] [PubMed]

2006

K. Nerkararyan, T. Abrahamyan, E. Janunts, R. Khachatryan, and S. Harutyunyan, “Excitation and propagation of surface plasmon polaritons on the gold covered conical tip,” Phys. Lett. A 350(1-2), 147–149 (2006).
[CrossRef]

H. G. Frey, C. Bolwien, A. Brandenburg, R. Ros, and D. Anselmetti, “Optimized apertureless optical near-field probes with 15 nm optical resolution,” Nanotechnology 17(13), 3105–3110 (2006).
[CrossRef]

W. Nakagawa, L. Vaccaro, and H. P. Herzig, “Analysis of mode coupling due to spherical defects in ideal fully metal-coated scanning near-field optical microscopy probes,” J. Opt. Soc. Am. A 23(5), 1096–1105 (2006).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(176805), 4 (2006).
[CrossRef]

C. Themistos, B. M. Azimur Rahman, M. Rajarajan, V. Rakocevic, and K. T. V. Grattan, “Finite element solutions of surface-plasmon modes in metal-clad dielectric waveguides at THz frequency,” IEEE J. Lightwave Technol. 24(12), 5111–5118 (2006).
[CrossRef]

2005

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, T. Scharf, and H. P. Herzig, “On the coupling and transmission of transverse and longitudinal fields into fully metal-coated optical nano-probes,” Proc. SPIE 5736, 96–104 (2005).
[CrossRef]

L. Liu and S. He, “Design of metal-cladded near-field fiber probes with a dispersive body-of-revolution finite-difference time-domain method,” Appl. Opt. 44(17), 3429–3437 (2005).
[CrossRef] [PubMed]

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[CrossRef]

2003

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(Pt 3), 220–224 (2003).
[CrossRef] [PubMed]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
[CrossRef]

2002

O. J. F. Martin and M. Paulus, “Influence of metal roughness on the near-field generated by an aperture/apertureless probe,” J. Microsc. 205(Pt 2), 147–152 (2002).
[CrossRef] [PubMed]

2001

N. A. Janunts and K. V. Nerkararyan, “Modulation of light radiation during input into a waveguide by resonance excitation of surface plasmons,” Appl. Phys. Lett. 79(3), 299–301 (2001).
[CrossRef]

2000

B. Hecht, B. Sick, U. Wild, V. Deckert, R. Zenobi, O. Martin, and D. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

1994

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[CrossRef] [PubMed]

1984

D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[CrossRef]

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984).
[CrossRef]

Abrahamyan, T.

T. Abrahamyan and K. V. Nerkararyan, “Surface plasmon resonance on vicinity of gold-coated fiber tip,” Phys. Lett. A 364(6), 494–496 (2007).
[CrossRef]

K. Nerkararyan, T. Abrahamyan, E. Janunts, R. Khachatryan, and S. Harutyunyan, “Excitation and propagation of surface plasmon polaritons on the gold covered conical tip,” Phys. Lett. A 350(1-2), 147–149 (2006).
[CrossRef]

Aeschimann, L.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107(2-3), 158–165 (2007).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, T. Scharf, and H. P. Herzig, “On the coupling and transmission of transverse and longitudinal fields into fully metal-coated optical nano-probes,” Proc. SPIE 5736, 96–104 (2005).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
[CrossRef]

Agarwal, K.

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008).
[CrossRef]

Albrecht, M.

C. Ropers, C. C. Neacsu, M. B. Raschke, M. Albrecht, C. Lienau, and T. Elsaesser, “Light confinement at ultrasharp metallic tips,” Jpn. J. Appl. Phys. 47(7), 6051–6054 (2008).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Andrews, S. R.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(063822), 10 (2007).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(176805), 4 (2006).
[CrossRef]

Anselmetti, D.

H. G. Frey, C. Bolwien, A. Brandenburg, R. Ros, and D. Anselmetti, “Optimized apertureless optical near-field probes with 15 nm optical resolution,” Nanotechnology 17(13), 3105–3110 (2006).
[CrossRef]

Antosiewicz, T. J.

Azimur Rahman, B. M.

C. Themistos, B. M. Azimur Rahman, M. Rajarajan, V. Rakocevic, and K. T. V. Grattan, “Finite element solutions of surface-plasmon modes in metal-clad dielectric waveguides at THz frequency,” IEEE J. Lightwave Technol. 24(12), 5111–5118 (2006).
[CrossRef]

Babayan, A. E.

A. E. Babayan and KhV. Nerkararyan, “The strong localization of surface plasmon polariton on a metal-coated tip of optical fiber,” Ultramicroscopy 107(12), 1136–1140 (2007).
[CrossRef] [PubMed]

Baghdasaryan, K. S.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[CrossRef]

Baida, F. I.

F. I. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4(1), 51–59 (2009).
[CrossRef]

Belkhir, A.

F. I. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4(1), 51–59 (2009).
[CrossRef]

Beversluis, M. R.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(Pt 3), 220–224 (2003).
[CrossRef] [PubMed]

Bolwien, C.

H. G. Frey, C. Bolwien, A. Brandenburg, R. Ros, and D. Anselmetti, “Optimized apertureless optical near-field probes with 15 nm optical resolution,” Nanotechnology 17(13), 3105–3110 (2006).
[CrossRef]

Bouhelier, A.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(Pt 3), 220–224 (2003).
[CrossRef] [PubMed]

Brandenburg, A.

H. G. Frey, C. Bolwien, A. Brandenburg, R. Ros, and D. Anselmetti, “Optimized apertureless optical near-field probes with 15 nm optical resolution,” Nanotechnology 17(13), 3105–3110 (2006).
[CrossRef]

Chen, W.

Chen, X.

L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-5-3326 .
[CrossRef] [PubMed]

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008).
[CrossRef]

Dändliker, R.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107(2-3), 158–165 (2007).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
[CrossRef]

Deckert, V.

B. Hecht, B. Sick, U. Wild, V. Deckert, R. Zenobi, O. Martin, and D. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

Denk, W.

D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[CrossRef]

Descrovi, E.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107(2-3), 158–165 (2007).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, T. Scharf, and H. P. Herzig, “On the coupling and transmission of transverse and longitudinal fields into fully metal-coated optical nano-probes,” Proc. SPIE 5736, 96–104 (2005).
[CrossRef]

Ding, W.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(063822), 10 (2007).
[CrossRef]

Elezzabi, A. Y.

Elsaesser, T.

C. Ropers, C. C. Neacsu, M. B. Raschke, M. Albrecht, C. Lienau, and T. Elsaesser, “Light confinement at ultrasharp metallic tips,” Jpn. J. Appl. Phys. 47(7), 6051–6054 (2008).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Frey, H. G.

H. G. Frey, C. Bolwien, A. Brandenburg, R. Ros, and D. Anselmetti, “Optimized apertureless optical near-field probes with 15 nm optical resolution,” Nanotechnology 17(13), 3105–3110 (2006).
[CrossRef]

Garcia-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(176805), 4 (2006).
[CrossRef]

Grattan, K. T. V.

C. Themistos, B. M. Azimur Rahman, M. Rajarajan, V. Rakocevic, and K. T. V. Grattan, “Finite element solutions of surface-plasmon modes in metal-clad dielectric waveguides at THz frequency,” IEEE J. Lightwave Technol. 24(12), 5111–5118 (2006).
[CrossRef]

Hafner, C.

W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[CrossRef] [PubMed]

V. Lotito, U. Sennhauser, and C. Hafner, “Finite element analysis of asymmetric scanning near field optical microscopy probes,” J. Comput. Theor. Nanosci. (to be published).

Harootunian, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984).
[CrossRef]

Harutyunyan, S.

K. Nerkararyan, T. Abrahamyan, E. Janunts, R. Khachatryan, and S. Harutyunyan, “Excitation and propagation of surface plasmon polaritons on the gold covered conical tip,” Phys. Lett. A 350(1-2), 147–149 (2006).
[CrossRef]

He, S.

Hecht, B.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[CrossRef]

B. Hecht, B. Sick, U. Wild, V. Deckert, R. Zenobi, O. Martin, and D. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

Herzig, H. P.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107(2-3), 158–165 (2007).
[CrossRef]

W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).

W. Nakagawa, L. Vaccaro, and H. P. Herzig, “Analysis of mode coupling due to spherical defects in ideal fully metal-coated scanning near-field optical microscopy probes,” J. Opt. Soc. Am. A 23(5), 1096–1105 (2006).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, T. Scharf, and H. P. Herzig, “On the coupling and transmission of transverse and longitudinal fields into fully metal-coated optical nano-probes,” Proc. SPIE 5736, 96–104 (2005).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
[CrossRef]

Isaacson, M.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984).
[CrossRef]

Janunts, E.

K. Nerkararyan, T. Abrahamyan, E. Janunts, R. Khachatryan, and S. Harutyunyan, “Excitation and propagation of surface plasmon polaritons on the gold covered conical tip,” Phys. Lett. A 350(1-2), 147–149 (2006).
[CrossRef]

Janunts, N. A.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[CrossRef]

N. A. Janunts and K. V. Nerkararyan, “Modulation of light radiation during input into a waveguide by resonance excitation of surface plasmons,” Appl. Phys. Lett. 79(3), 299–301 (2001).
[CrossRef]

Khachatryan, R.

K. Nerkararyan, T. Abrahamyan, E. Janunts, R. Khachatryan, and S. Harutyunyan, “Excitation and propagation of surface plasmon polaritons on the gold covered conical tip,” Phys. Lett. A 350(1-2), 147–149 (2006).
[CrossRef]

Lanz, M.

D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[CrossRef]

Lewis, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984).
[CrossRef]

Lienau, C.

C. Ropers, C. C. Neacsu, M. B. Raschke, M. Albrecht, C. Lienau, and T. Elsaesser, “Light confinement at ultrasharp metallic tips,” Jpn. J. Appl. Phys. 47(7), 6051–6054 (2008).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Liu, L.

Lotito, V.

V. Lotito, U. Sennhauser, and C. Hafner, “Finite element analysis of asymmetric scanning near field optical microscopy probes,” J. Comput. Theor. Nanosci. (to be published).

Maier, S. A.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(063822), 10 (2007).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(176805), 4 (2006).
[CrossRef]

Martin, O.

B. Hecht, B. Sick, U. Wild, V. Deckert, R. Zenobi, O. Martin, and D. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

Martin, O. J. F.

O. J. F. Martin and M. Paulus, “Influence of metal roughness on the near-field generated by an aperture/apertureless probe,” J. Microsc. 205(Pt 2), 147–152 (2002).
[CrossRef] [PubMed]

Martin-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(176805), 4 (2006).
[CrossRef]

Murray, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984).
[CrossRef]

Nakagawa, W.

W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).

W. Nakagawa, L. Vaccaro, and H. P. Herzig, “Analysis of mode coupling due to spherical defects in ideal fully metal-coated scanning near-field optical microscopy probes,” J. Opt. Soc. Am. A 23(5), 1096–1105 (2006).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, T. Scharf, and H. P. Herzig, “On the coupling and transmission of transverse and longitudinal fields into fully metal-coated optical nano-probes,” Proc. SPIE 5736, 96–104 (2005).
[CrossRef]

Neacsu, C. C.

C. Ropers, C. C. Neacsu, M. B. Raschke, M. Albrecht, C. Lienau, and T. Elsaesser, “Light confinement at ultrasharp metallic tips,” Jpn. J. Appl. Phys. 47(7), 6051–6054 (2008).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Nerkararyan, K.

K. Nerkararyan, T. Abrahamyan, E. Janunts, R. Khachatryan, and S. Harutyunyan, “Excitation and propagation of surface plasmon polaritons on the gold covered conical tip,” Phys. Lett. A 350(1-2), 147–149 (2006).
[CrossRef]

Nerkararyan, K. V.

T. Abrahamyan and K. V. Nerkararyan, “Surface plasmon resonance on vicinity of gold-coated fiber tip,” Phys. Lett. A 364(6), 494–496 (2007).
[CrossRef]

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[CrossRef]

N. A. Janunts and K. V. Nerkararyan, “Modulation of light radiation during input into a waveguide by resonance excitation of surface plasmons,” Appl. Phys. Lett. 79(3), 299–301 (2001).
[CrossRef]

Nerkararyan, KhV.

A. E. Babayan and KhV. Nerkararyan, “The strong localization of surface plasmon polariton on a metal-coated tip of optical fiber,” Ultramicroscopy 107(12), 1136–1140 (2007).
[CrossRef] [PubMed]

Novotny, L.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(Pt 3), 220–224 (2003).
[CrossRef] [PubMed]

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[CrossRef] [PubMed]

Paulus, M.

O. J. F. Martin and M. Paulus, “Influence of metal roughness on the near-field generated by an aperture/apertureless probe,” J. Microsc. 205(Pt 2), 147–152 (2002).
[CrossRef] [PubMed]

Pohl, D.

B. Hecht, B. Sick, U. Wild, V. Deckert, R. Zenobi, O. Martin, and D. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[CrossRef]

Quong, M. C.

Rajarajan, M.

C. Themistos, B. M. Azimur Rahman, M. Rajarajan, V. Rakocevic, and K. T. V. Grattan, “Finite element solutions of surface-plasmon modes in metal-clad dielectric waveguides at THz frequency,” IEEE J. Lightwave Technol. 24(12), 5111–5118 (2006).
[CrossRef]

Rakocevic, V.

C. Themistos, B. M. Azimur Rahman, M. Rajarajan, V. Rakocevic, and K. T. V. Grattan, “Finite element solutions of surface-plasmon modes in metal-clad dielectric waveguides at THz frequency,” IEEE J. Lightwave Technol. 24(12), 5111–5118 (2006).
[CrossRef]

Raschke, M. B.

C. Ropers, C. C. Neacsu, M. B. Raschke, M. Albrecht, C. Lienau, and T. Elsaesser, “Light confinement at ultrasharp metallic tips,” Jpn. J. Appl. Phys. 47(7), 6051–6054 (2008).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Renger, J.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(Pt 3), 220–224 (2003).
[CrossRef] [PubMed]

Ropers, C.

C. Ropers, C. C. Neacsu, M. B. Raschke, M. Albrecht, C. Lienau, and T. Elsaesser, “Light confinement at ultrasharp metallic tips,” Jpn. J. Appl. Phys. 47(7), 6051–6054 (2008).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Ros, R.

H. G. Frey, C. Bolwien, A. Brandenburg, R. Ros, and D. Anselmetti, “Optimized apertureless optical near-field probes with 15 nm optical resolution,” Nanotechnology 17(13), 3105–3110 (2006).
[CrossRef]

Scharf, T.

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, T. Scharf, and H. P. Herzig, “On the coupling and transmission of transverse and longitudinal fields into fully metal-coated optical nano-probes,” Proc. SPIE 5736, 96–104 (2005).
[CrossRef]

Sennhauser, U.

V. Lotito, U. Sennhauser, and C. Hafner, “Finite element analysis of asymmetric scanning near field optical microscopy probes,” J. Comput. Theor. Nanosci. (to be published).

Shen, L.

L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-5-3326 .
[CrossRef] [PubMed]

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008).
[CrossRef]

Shen, L. F.

J. J. Wu, T. J. Yang, and L. F. Shen, “Subwavelength microwave guiding by a periodically corrugated metal wire,” J. Electromagn. Waves Appl. 23(1), 11–19 (2009).
[CrossRef]

Sick, B.

B. Hecht, B. Sick, U. Wild, V. Deckert, R. Zenobi, O. Martin, and D. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

Staufer, U.

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, T. Scharf, and H. P. Herzig, “On the coupling and transmission of transverse and longitudinal fields into fully metal-coated optical nano-probes,” Proc. SPIE 5736, 96–104 (2005).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
[CrossRef]

Szoplik, T.

Themistos, C.

C. Themistos, B. M. Azimur Rahman, M. Rajarajan, V. Rakocevic, and K. T. V. Grattan, “Finite element solutions of surface-plasmon modes in metal-clad dielectric waveguides at THz frequency,” IEEE J. Lightwave Technol. 24(12), 5111–5118 (2006).
[CrossRef]

Tortora, P.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107(2-3), 158–165 (2007).
[CrossRef]

Vaccaro, L.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107(2-3), 158–165 (2007).
[CrossRef]

W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).

W. Nakagawa, L. Vaccaro, and H. P. Herzig, “Analysis of mode coupling due to spherical defects in ideal fully metal-coated scanning near-field optical microscopy probes,” J. Opt. Soc. Am. A 23(5), 1096–1105 (2006).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, T. Scharf, and H. P. Herzig, “On the coupling and transmission of transverse and longitudinal fields into fully metal-coated optical nano-probes,” Proc. SPIE 5736, 96–104 (2005).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
[CrossRef]

Wild, U.

B. Hecht, B. Sick, U. Wild, V. Deckert, R. Zenobi, O. Martin, and D. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

Wróbel, P.

Wu, J. J.

J. J. Wu, T. J. Yang, and L. F. Shen, “Subwavelength microwave guiding by a periodically corrugated metal wire,” J. Electromagn. Waves Appl. 23(1), 11–19 (2009).
[CrossRef]

Yang, T. J.

J. J. Wu, T. J. Yang, and L. F. Shen, “Subwavelength microwave guiding by a periodically corrugated metal wire,” J. Electromagn. Waves Appl. 23(1), 11–19 (2009).
[CrossRef]

L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-5-3326 .
[CrossRef] [PubMed]

Zenobi, R.

B. Hecht, B. Sick, U. Wild, V. Deckert, R. Zenobi, O. Martin, and D. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

Zhan, Q.

Zhong, Y.

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83(3), 584–586 (2003).
[CrossRef]

N. A. Janunts and K. V. Nerkararyan, “Modulation of light radiation during input into a waveguide by resonance excitation of surface plasmons,” Appl. Phys. Lett. 79(3), 299–301 (2001).
[CrossRef]

Chin. Opt. Lett.

IEEE J. Lightwave Technol.

C. Themistos, B. M. Azimur Rahman, M. Rajarajan, V. Rakocevic, and K. T. V. Grattan, “Finite element solutions of surface-plasmon modes in metal-clad dielectric waveguides at THz frequency,” IEEE J. Lightwave Technol. 24(12), 5111–5118 (2006).
[CrossRef]

J. Chem. Phys.

B. Hecht, B. Sick, U. Wild, V. Deckert, R. Zenobi, O. Martin, and D. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

J. Comput. Theor. Nanosci.

W. Nakagawa, L. Vaccaro, H. P. Herzig, and C. Hafner, “Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes,” J. Comput. Theor. Nanosci. 4, 692–703 (2007).

V. Lotito, U. Sennhauser, and C. Hafner, “Finite element analysis of asymmetric scanning near field optical microscopy probes,” J. Comput. Theor. Nanosci. (to be published).

J. Electromagn. Waves Appl.

J. J. Wu, T. J. Yang, and L. F. Shen, “Subwavelength microwave guiding by a periodically corrugated metal wire,” J. Electromagn. Waves Appl. 23(1), 11–19 (2009).
[CrossRef]

J. Microsc.

O. J. F. Martin and M. Paulus, “Influence of metal roughness on the near-field generated by an aperture/apertureless probe,” J. Microsc. 205(Pt 2), 147–152 (2002).
[CrossRef] [PubMed]

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(Pt 3), 220–224 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

C. Ropers, C. C. Neacsu, M. B. Raschke, M. Albrecht, C. Lienau, and T. Elsaesser, “Light confinement at ultrasharp metallic tips,” Jpn. J. Appl. Phys. 47(7), 6051–6054 (2008).
[CrossRef]

Nano Lett.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Nanotechnology

H. G. Frey, C. Bolwien, A. Brandenburg, R. Ros, and D. Anselmetti, “Optimized apertureless optical near-field probes with 15 nm optical resolution,” Nanotechnology 17(13), 3105–3110 (2006).
[CrossRef]

Opt. Commun.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1-3), 118–124 (2005).
[CrossRef]

Opt. Express

Opto-Electron. Rev.

T. J. Antosiewicz and T. Szoplik, “Corrugated SNOM probe with enhanced energy throughput,” Opto-Electron. Rev. 16(4), 451–457 (2008).
[CrossRef]

Phys. Lett. A

T. Abrahamyan and K. V. Nerkararyan, “Surface plasmon resonance on vicinity of gold-coated fiber tip,” Phys. Lett. A 364(6), 494–496 (2007).
[CrossRef]

K. Nerkararyan, T. Abrahamyan, E. Janunts, R. Khachatryan, and S. Harutyunyan, “Excitation and propagation of surface plasmon polaritons on the gold covered conical tip,” Phys. Lett. A 350(1-2), 147–149 (2006).
[CrossRef]

Phys. Rev. A

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(063822), 10 (2007).
[CrossRef]

Phys. Rev. B

L. Shen, X. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(176805), 4 (2006).
[CrossRef]

Plasmonics

F. I. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4(1), 51–59 (2009).
[CrossRef]

Proc. SPIE

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, T. Scharf, and H. P. Herzig, “On the coupling and transmission of transverse and longitudinal fields into fully metal-coated optical nano-probes,” Proc. SPIE 5736, 96–104 (2005).
[CrossRef]

Ultramicroscopy

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy 107(2-3), 158–165 (2007).
[CrossRef]

A. E. Babayan and KhV. Nerkararyan, “The strong localization of surface plasmon polariton on a metal-coated tip of optical fiber,” Ultramicroscopy 107(12), 1136–1140 (2007).
[CrossRef] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13(3), 227–231 (1984).
[CrossRef]

Other

L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

L. Novotny, Progress in Optics, 50, (Elsevier, 2007), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sketch of: (a) axisymmetric fully metal-coated probe; (b) asymmetrically corrugated fully metal-coated probe.

Fig. 2
Fig. 2

Input modes (upper row) and corresponding normalized near field distributions in a plane located at 10 nm from the apex of a standard axisymmetric fully metal-coated probe (lower row).

Fig. 3
Fig. 3

Normalized near field intensity distributions in a plane located at 10 nm from the apex of the structure in Fig. 1(b) and amama material combination.

Fig. 4
Fig. 4

Characteristics of the near field intensity distributions in a plane located at 10 nm from the apex of the corrugated probe under H polarized excitation for each of the material permutations in the five semirings: (a) FWHM; (b) comparison of the peak value with respect to the one of the standard probe under radially polarized excitation (denoted by Rstd); (c) comparison of the peak value with respect to the one under V polarized excitation; (d) maximum to minimum ratio.

Fig. 5
Fig. 5

Normalized near field intensity distributions in a plane located at 10 nm from the apex of the structure in Fig. 1(b) and omomo material combination.

Fig. 6
Fig. 6

Characteristics of the near field intensity distributions in a plane located at 10 nm from the apex of the corrugated probe under H polarized excitation for each of the material permutations in the five semirings (metal-oxide based structure): (a) FWHM; (b) comparison of the peak value with respect to the one of the standard probe under radially polarized excitation (denoted by Rstd); (c) comparison of the peak value with respect to the one under V polarized excitation; (d) maximum to minimum ratio.

Fig. 7
Fig. 7

Normalized near field intensity distributions under H polarized excitation as a function of the opening angle: (a) plot on a 600 nm by 600 nm plane located at 10 nm from the tip apex; (b) profile along x; (c) profile along y.

Fig. 8
Fig. 8

Variation of the characteristics of the near field distribution under H polarized excitation for the amama configuration as a function of the opening angle: (a) FWHM; (b) comparison of the peak value with respect to the one of the standard probe under radially polarized excitation (denoted by Rstd); (c) comparison of the peak value with respect to the one under V polarized excitation; (d) maximum to minimum ratio.

Metrics