Abstract

Fluorophore excited state lifetime is a useful indicator of micro-environment in cellular optical molecular imaging. For quantitative sensing, precise lifetime determination is important, yet is often difficult to accomplish when using the experimental conditions favored by live cells. Here we report the first application of temporal optimization and spatial denoising methods to two-photon time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to improve lifetime precision in live-cell images. The results demonstrated a greater than five-fold improvement in lifetime precision. This approach minimizes the adverse effects of excitation light on live cells and should benefit FLIM applications to high content analysis and bioimage informatics.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. X. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
    [CrossRef] [PubMed]
  2. S. Pelet, M. J. R. Previte, D. Kim, K. H. Kim, T. T. J. Su, and P. T. C. So, “Frequency domain lifetime and spectral imaging microscopy,” Microsc. Res. Tech. 69(11), 861–874 (2006).
    [CrossRef] [PubMed]
  3. C. W. Chang, M. Wu, S. D. Merajver, and M. A. Mycek, “Physiological fluorescence lifetime imaging microscopy improves Förster resonance energy transfer detection in living cells,” J. Biomed. Opt. 14(6), 060502 (2009).
    [CrossRef]
  4. D. Sud and M. A. Mycek, “Calibration and validation of an optical sensor for intracellular oxygen measurements,” J. Biomed. Opt. 14(2), 020506 (2009).
    [CrossRef] [PubMed]
  5. D. Sud, W. Zhong, D. G. Beer, and M. A. Mycek, “Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models,” Opt. Express 14(10), 4412–4426 (2006).
    [CrossRef] [PubMed]
  6. C. W. Chang, D. Sud, and M. A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods Cell Biol. 81, 495–524 (2007).
    [CrossRef] [PubMed]
  7. J. Low, S. Huang, W. Blosser, M. Dowless, J. Burch, B. Neubauer, and L. Stancato, “High-content imaging characterization of cell cycle therapeutics through in vitro and in vivo subpopulation analysis,” Mol. Cancer Ther. 7(8), 2455–2463 (2008).
    [CrossRef] [PubMed]
  8. P. Vallotton, R. Lagerstrom, C. Sun, M. Buckley, D. D. Wang, M. De Silva, S. S. Tan, and J. A. Gunnersen, “Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision,” Cytometry A 71A(10), 889–895 (2007).
    [CrossRef]
  9. C. Antczak, T. Takagi, C. N. Ramirez, C. Radu, and H. Djaballah, “Live-cell imaging of caspase activation for high-content screening,” J. Biomol. Screen. 14(8), 956–969 (2009).
    [CrossRef] [PubMed]
  10. C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
    [CrossRef]
  11. J. R. Swedlow, I. G. Goldberg, K. W. Eliceiri, and OME Consortium, “Bioimage informatics for experimental biology,” Annu. Rev. Biophys. 38(1), 327–346 (2009).
    [CrossRef] [PubMed]
  12. C. Vonesch, “Fast and automated wavelet-regularized image restoration in fluorescence microscopy,” Ph.D. thesis, École Polytechnique Fédérale De Lausanne (2009).
  13. C. Buranachai, D. Kamiyama, A. Chiba, B. D. Williams, and R. M. Clegg, “Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, image improvement and wavelet analysis,” J. Fluoresc. 18(5), 929–942 (2008).
    [CrossRef] [PubMed]
  14. B. Q. Spring and R. M. Clegg, “Image analysis for denoising full-field frequency-domain fluorescence lifetime images,” J. Microsc. (Oxford) 235(2), 221–237 (2009).
    [CrossRef]
  15. J. Boulanger, J. B. Sibarita, C. Kervrann, and P. Bouthemy, “Non-parametric regression for patch-based fluorescence microscopy image sequence denoising,” 2008 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Vols 1–4, 748–751 (2008).
  16. S. Delpretti, F. Luisier, S. Ramani, T. Blu, and M. Unser, “Multiframe SURE-LET denoising of timelapse fluorescence microscopy images,” 2008 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Vols 1–4, 149–152 (2008).
  17. S. Osher, M. Burger, D. Goldfarb, J. J. Xu, and W. T. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005).
    [CrossRef]
  18. E. Tadmor, S. Nezzar, and L. Vese, “A multiscale image representation using hierarchical (BV, L2) decompositions,” Multiscale Model. Simul. 2(4), 554–579 (2004).
    [CrossRef]
  19. N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69(4), 260–266 (2006).
    [CrossRef] [PubMed]
  20. C. N. Wu, Y. Cheng, M. L. Liu, and Y. Jin, “Measurement of axisymmetric two-phase flows by an improved x-ray-computed tomography technique,” Ind. Eng. Chem. Res. 47(6), 2063–2074 (2008).
    [CrossRef]
  21. J. Tohka and A. Reilhac, “Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method,” Neuroimage 39(4), 1570–1584 (2008).
    [CrossRef]
  22. A. Sofou and P. Maragos, “Generalized flooding and Multicue PDE-based image segmentation,” IEEE Trans. Image Process. 17(3), 364–376 (2008).
    [CrossRef] [PubMed]
  23. B. Nilsson, M. Johansson, A. Heyden, S. Nelander, and T. Fioretos, “An improved method for detecting and delineating genomic regions with altered gene expression in cancer,” Genome Biol. 9(1), R13 (2008).
    [CrossRef] [PubMed]
  24. C. W. Chang, “Improving Accuracy and Precision in Biological Applications of Fluorescence Lifetime Imaging Microscopy,” Ph.D. thesis, University of Michigan (2009).
  25. C. W. Chang and M. A. Mycek, “Improving precision in time-gated FLIM for low-light live-cell imaging,” Proc. SPIE 7370, 7370091–7370096 (2009).
  26. C. W. Chang and M. A. Mycek, “Increasing precision of lifetime determination in fluorescence lifetime imaging,” Proc. SPIE 7570, 757007 (2010).
    [CrossRef]
  27. H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206(3), 218–224 (2002).
    [CrossRef]
  28. I. Bugiel, K. König, and H. Wabnitz, “Investigation of cell by fluorescence laser scanning microscopy with subnanosecond time resolution,” Lasers Life Sci. 3, 47–53 (1989).
  29. X. F. Wang, T. Uchida, D. M. Coleman, and S. Minami, “A two-dimensional fluorescence lifetime imaging system using a gated image intensifier,” Appl. Spectrosc. 45(3), 360–366 (1991).
    [CrossRef]
  30. K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
    [CrossRef] [PubMed]
  31. T. Le, R. Chartrand, and T. J. Asaki, “A variational approach to reconstructing images corrupted by poisson noise,” J. Math. Imaging Vis. 27(3), 257–263 (2007).
    [CrossRef]

2010 (1)

C. W. Chang and M. A. Mycek, “Increasing precision of lifetime determination in fluorescence lifetime imaging,” Proc. SPIE 7570, 757007 (2010).
[CrossRef]

2009 (6)

C. W. Chang and M. A. Mycek, “Improving precision in time-gated FLIM for low-light live-cell imaging,” Proc. SPIE 7370, 7370091–7370096 (2009).

C. W. Chang, M. Wu, S. D. Merajver, and M. A. Mycek, “Physiological fluorescence lifetime imaging microscopy improves Förster resonance energy transfer detection in living cells,” J. Biomed. Opt. 14(6), 060502 (2009).
[CrossRef]

D. Sud and M. A. Mycek, “Calibration and validation of an optical sensor for intracellular oxygen measurements,” J. Biomed. Opt. 14(2), 020506 (2009).
[CrossRef] [PubMed]

C. Antczak, T. Takagi, C. N. Ramirez, C. Radu, and H. Djaballah, “Live-cell imaging of caspase activation for high-content screening,” J. Biomol. Screen. 14(8), 956–969 (2009).
[CrossRef] [PubMed]

J. R. Swedlow, I. G. Goldberg, K. W. Eliceiri, and OME Consortium, “Bioimage informatics for experimental biology,” Annu. Rev. Biophys. 38(1), 327–346 (2009).
[CrossRef] [PubMed]

B. Q. Spring and R. M. Clegg, “Image analysis for denoising full-field frequency-domain fluorescence lifetime images,” J. Microsc. (Oxford) 235(2), 221–237 (2009).
[CrossRef]

2008 (7)

C. Buranachai, D. Kamiyama, A. Chiba, B. D. Williams, and R. M. Clegg, “Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, image improvement and wavelet analysis,” J. Fluoresc. 18(5), 929–942 (2008).
[CrossRef] [PubMed]

C. N. Wu, Y. Cheng, M. L. Liu, and Y. Jin, “Measurement of axisymmetric two-phase flows by an improved x-ray-computed tomography technique,” Ind. Eng. Chem. Res. 47(6), 2063–2074 (2008).
[CrossRef]

J. Tohka and A. Reilhac, “Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method,” Neuroimage 39(4), 1570–1584 (2008).
[CrossRef]

A. Sofou and P. Maragos, “Generalized flooding and Multicue PDE-based image segmentation,” IEEE Trans. Image Process. 17(3), 364–376 (2008).
[CrossRef] [PubMed]

B. Nilsson, M. Johansson, A. Heyden, S. Nelander, and T. Fioretos, “An improved method for detecting and delineating genomic regions with altered gene expression in cancer,” Genome Biol. 9(1), R13 (2008).
[CrossRef] [PubMed]

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

J. Low, S. Huang, W. Blosser, M. Dowless, J. Burch, B. Neubauer, and L. Stancato, “High-content imaging characterization of cell cycle therapeutics through in vitro and in vivo subpopulation analysis,” Mol. Cancer Ther. 7(8), 2455–2463 (2008).
[CrossRef] [PubMed]

2007 (3)

P. Vallotton, R. Lagerstrom, C. Sun, M. Buckley, D. D. Wang, M. De Silva, S. S. Tan, and J. A. Gunnersen, “Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision,” Cytometry A 71A(10), 889–895 (2007).
[CrossRef]

T. Le, R. Chartrand, and T. J. Asaki, “A variational approach to reconstructing images corrupted by poisson noise,” J. Math. Imaging Vis. 27(3), 257–263 (2007).
[CrossRef]

C. W. Chang, D. Sud, and M. A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods Cell Biol. 81, 495–524 (2007).
[CrossRef] [PubMed]

2006 (3)

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69(4), 260–266 (2006).
[CrossRef] [PubMed]

D. Sud, W. Zhong, D. G. Beer, and M. A. Mycek, “Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models,” Opt. Express 14(10), 4412–4426 (2006).
[CrossRef] [PubMed]

S. Pelet, M. J. R. Previte, D. Kim, K. H. Kim, T. T. J. Su, and P. T. C. So, “Frequency domain lifetime and spectral imaging microscopy,” Microsc. Res. Tech. 69(11), 861–874 (2006).
[CrossRef] [PubMed]

2005 (2)

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. X. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

S. Osher, M. Burger, D. Goldfarb, J. J. Xu, and W. T. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005).
[CrossRef]

2004 (1)

E. Tadmor, S. Nezzar, and L. Vese, “A multiscale image representation using hierarchical (BV, L2) decompositions,” Multiscale Model. Simul. 2(4), 554–579 (2004).
[CrossRef]

2002 (1)

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206(3), 218–224 (2002).
[CrossRef]

1999 (1)

K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
[CrossRef] [PubMed]

1991 (1)

1989 (1)

I. Bugiel, K. König, and H. Wabnitz, “Investigation of cell by fluorescence laser scanning microscopy with subnanosecond time resolution,” Lasers Life Sci. 3, 47–53 (1989).

Achilefu, S.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. X. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

Agronskaia, A. V.

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206(3), 218–224 (2002).
[CrossRef]

Antczak, C.

C. Antczak, T. Takagi, C. N. Ramirez, C. Radu, and H. Djaballah, “Live-cell imaging of caspase activation for high-content screening,” J. Biomol. Screen. 14(8), 956–969 (2009).
[CrossRef] [PubMed]

Asaki, T. J.

T. Le, R. Chartrand, and T. J. Asaki, “A variational approach to reconstructing images corrupted by poisson noise,” J. Math. Imaging Vis. 27(3), 257–263 (2007).
[CrossRef]

Ashworth, H.

K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
[CrossRef] [PubMed]

Asselbergs, M. A. H.

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206(3), 218–224 (2002).
[CrossRef]

Beer, D. G.

Blanc-Feraud, L.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69(4), 260–266 (2006).
[CrossRef] [PubMed]

Bloch, S.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. X. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

Blosser, W.

J. Low, S. Huang, W. Blosser, M. Dowless, J. Burch, B. Neubauer, and L. Stancato, “High-content imaging characterization of cell cycle therapeutics through in vitro and in vivo subpopulation analysis,” Mol. Cancer Ther. 7(8), 2455–2463 (2008).
[CrossRef] [PubMed]

Buckley, M.

P. Vallotton, R. Lagerstrom, C. Sun, M. Buckley, D. D. Wang, M. De Silva, S. S. Tan, and J. A. Gunnersen, “Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision,” Cytometry A 71A(10), 889–895 (2007).
[CrossRef]

Bugiel, I.

I. Bugiel, K. König, and H. Wabnitz, “Investigation of cell by fluorescence laser scanning microscopy with subnanosecond time resolution,” Lasers Life Sci. 3, 47–53 (1989).

Bunney, T. D.

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

Buranachai, C.

C. Buranachai, D. Kamiyama, A. Chiba, B. D. Williams, and R. M. Clegg, “Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, image improvement and wavelet analysis,” J. Fluoresc. 18(5), 929–942 (2008).
[CrossRef] [PubMed]

Burch, J.

J. Low, S. Huang, W. Blosser, M. Dowless, J. Burch, B. Neubauer, and L. Stancato, “High-content imaging characterization of cell cycle therapeutics through in vitro and in vivo subpopulation analysis,” Mol. Cancer Ther. 7(8), 2455–2463 (2008).
[CrossRef] [PubMed]

Burger, M.

S. Osher, M. Burger, D. Goldfarb, J. J. Xu, and W. T. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005).
[CrossRef]

Chang, C. W.

C. W. Chang and M. A. Mycek, “Increasing precision of lifetime determination in fluorescence lifetime imaging,” Proc. SPIE 7570, 757007 (2010).
[CrossRef]

C. W. Chang and M. A. Mycek, “Improving precision in time-gated FLIM for low-light live-cell imaging,” Proc. SPIE 7370, 7370091–7370096 (2009).

C. W. Chang, M. Wu, S. D. Merajver, and M. A. Mycek, “Physiological fluorescence lifetime imaging microscopy improves Förster resonance energy transfer detection in living cells,” J. Biomed. Opt. 14(6), 060502 (2009).
[CrossRef]

C. W. Chang, D. Sud, and M. A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods Cell Biol. 81, 495–524 (2007).
[CrossRef] [PubMed]

Chartrand, R.

T. Le, R. Chartrand, and T. J. Asaki, “A variational approach to reconstructing images corrupted by poisson noise,” J. Math. Imaging Vis. 27(3), 257–263 (2007).
[CrossRef]

Cheng, Y.

C. N. Wu, Y. Cheng, M. L. Liu, and Y. Jin, “Measurement of axisymmetric two-phase flows by an improved x-ray-computed tomography technique,” Ind. Eng. Chem. Res. 47(6), 2063–2074 (2008).
[CrossRef]

Chiba, A.

C. Buranachai, D. Kamiyama, A. Chiba, B. D. Williams, and R. M. Clegg, “Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, image improvement and wavelet analysis,” J. Fluoresc. 18(5), 929–942 (2008).
[CrossRef] [PubMed]

Clegg, R. M.

B. Q. Spring and R. M. Clegg, “Image analysis for denoising full-field frequency-domain fluorescence lifetime images,” J. Microsc. (Oxford) 235(2), 221–237 (2009).
[CrossRef]

C. Buranachai, D. Kamiyama, A. Chiba, B. D. Williams, and R. M. Clegg, “Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, image improvement and wavelet analysis,” J. Fluoresc. 18(5), 929–942 (2008).
[CrossRef] [PubMed]

Coleman, D. M.

De Silva, M.

P. Vallotton, R. Lagerstrom, C. Sun, M. Buckley, D. D. Wang, M. De Silva, S. S. Tan, and J. A. Gunnersen, “Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision,” Cytometry A 71A(10), 889–895 (2007).
[CrossRef]

Demas, J. N.

K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
[CrossRef] [PubMed]

Dey, N.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69(4), 260–266 (2006).
[CrossRef] [PubMed]

Djaballah, H.

C. Antczak, T. Takagi, C. N. Ramirez, C. Radu, and H. Djaballah, “Live-cell imaging of caspase activation for high-content screening,” J. Biomol. Screen. 14(8), 956–969 (2009).
[CrossRef] [PubMed]

Dowless, M.

J. Low, S. Huang, W. Blosser, M. Dowless, J. Burch, B. Neubauer, and L. Stancato, “High-content imaging characterization of cell cycle therapeutics through in vitro and in vivo subpopulation analysis,” Mol. Cancer Ther. 7(8), 2455–2463 (2008).
[CrossRef] [PubMed]

Dunsby, C.

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

Eagle, R.

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

Eliceiri, K. W.

J. R. Swedlow, I. G. Goldberg, K. W. Eliceiri, and OME Consortium, “Bioimage informatics for experimental biology,” Annu. Rev. Biophys. 38(1), 327–346 (2009).
[CrossRef] [PubMed]

Fioretos, T.

B. Nilsson, M. Johansson, A. Heyden, S. Nelander, and T. Fioretos, “An improved method for detecting and delineating genomic regions with altered gene expression in cancer,” Genome Biol. 9(1), R13 (2008).
[CrossRef] [PubMed]

French, P. M. W.

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

Gandjbakhche, A.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. X. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

Gerritsen, H. C.

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206(3), 218–224 (2002).
[CrossRef]

Goldberg, I. G.

J. R. Swedlow, I. G. Goldberg, K. W. Eliceiri, and OME Consortium, “Bioimage informatics for experimental biology,” Annu. Rev. Biophys. 38(1), 327–346 (2009).
[CrossRef] [PubMed]

Goldfarb, D.

S. Osher, M. Burger, D. Goldfarb, J. J. Xu, and W. T. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005).
[CrossRef]

Grant, D. M.

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

Gunnersen, J. A.

P. Vallotton, R. Lagerstrom, C. Sun, M. Buckley, D. D. Wang, M. De Silva, S. S. Tan, and J. A. Gunnersen, “Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision,” Cytometry A 71A(10), 889–895 (2007).
[CrossRef]

Hargreaves, A.

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

Heyden, A.

B. Nilsson, M. Johansson, A. Heyden, S. Nelander, and T. Fioretos, “An improved method for detecting and delineating genomic regions with altered gene expression in cancer,” Genome Biol. 9(1), R13 (2008).
[CrossRef] [PubMed]

Huang, S.

J. Low, S. Huang, W. Blosser, M. Dowless, J. Burch, B. Neubauer, and L. Stancato, “High-content imaging characterization of cell cycle therapeutics through in vitro and in vivo subpopulation analysis,” Mol. Cancer Ther. 7(8), 2455–2463 (2008).
[CrossRef] [PubMed]

Isherwood, B.

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

Jin, Y.

C. N. Wu, Y. Cheng, M. L. Liu, and Y. Jin, “Measurement of axisymmetric two-phase flows by an improved x-ray-computed tomography technique,” Ind. Eng. Chem. Res. 47(6), 2063–2074 (2008).
[CrossRef]

Johansson, M.

B. Nilsson, M. Johansson, A. Heyden, S. Nelander, and T. Fioretos, “An improved method for detecting and delineating genomic regions with altered gene expression in cancer,” Genome Biol. 9(1), R13 (2008).
[CrossRef] [PubMed]

Kam, Z.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69(4), 260–266 (2006).
[CrossRef] [PubMed]

Kamiyama, D.

C. Buranachai, D. Kamiyama, A. Chiba, B. D. Williams, and R. M. Clegg, “Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, image improvement and wavelet analysis,” J. Fluoresc. 18(5), 929–942 (2008).
[CrossRef] [PubMed]

Kim, D.

S. Pelet, M. J. R. Previte, D. Kim, K. H. Kim, T. T. J. Su, and P. T. C. So, “Frequency domain lifetime and spectral imaging microscopy,” Microsc. Res. Tech. 69(11), 861–874 (2006).
[CrossRef] [PubMed]

Kim, K. H.

S. Pelet, M. J. R. Previte, D. Kim, K. H. Kim, T. T. J. Su, and P. T. C. So, “Frequency domain lifetime and spectral imaging microscopy,” Microsc. Res. Tech. 69(11), 861–874 (2006).
[CrossRef] [PubMed]

König, K.

I. Bugiel, K. König, and H. Wabnitz, “Investigation of cell by fluorescence laser scanning microscopy with subnanosecond time resolution,” Lasers Life Sci. 3, 47–53 (1989).

Lagerstrom, R.

P. Vallotton, R. Lagerstrom, C. Sun, M. Buckley, D. D. Wang, M. De Silva, S. S. Tan, and J. A. Gunnersen, “Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision,” Cytometry A 71A(10), 889–895 (2007).
[CrossRef]

Le, T.

T. Le, R. Chartrand, and T. J. Asaki, “A variational approach to reconstructing images corrupted by poisson noise,” J. Math. Imaging Vis. 27(3), 257–263 (2007).
[CrossRef]

Lesage, F.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. X. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

Liang, K. X.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. X. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

Liu, M. L.

C. N. Wu, Y. Cheng, M. L. Liu, and Y. Jin, “Measurement of axisymmetric two-phase flows by an improved x-ray-computed tomography technique,” Ind. Eng. Chem. Res. 47(6), 2063–2074 (2008).
[CrossRef]

Low, J.

J. Low, S. Huang, W. Blosser, M. Dowless, J. Burch, B. Neubauer, and L. Stancato, “High-content imaging characterization of cell cycle therapeutics through in vitro and in vivo subpopulation analysis,” Mol. Cancer Ther. 7(8), 2455–2463 (2008).
[CrossRef] [PubMed]

Maragos, P.

A. Sofou and P. Maragos, “Generalized flooding and Multicue PDE-based image segmentation,” IEEE Trans. Image Process. 17(3), 364–376 (2008).
[CrossRef] [PubMed]

McGhee, E. J.

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

McGinty, J.

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

McIntosh, L.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. X. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

Merajver, S. D.

C. W. Chang, M. Wu, S. D. Merajver, and M. A. Mycek, “Physiological fluorescence lifetime imaging microscopy improves Förster resonance energy transfer detection in living cells,” J. Biomed. Opt. 14(6), 060502 (2009).
[CrossRef]

Minami, S.

Munro, I.

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

Mycek, M. A.

C. W. Chang and M. A. Mycek, “Increasing precision of lifetime determination in fluorescence lifetime imaging,” Proc. SPIE 7570, 757007 (2010).
[CrossRef]

C. W. Chang and M. A. Mycek, “Improving precision in time-gated FLIM for low-light live-cell imaging,” Proc. SPIE 7370, 7370091–7370096 (2009).

C. W. Chang, M. Wu, S. D. Merajver, and M. A. Mycek, “Physiological fluorescence lifetime imaging microscopy improves Förster resonance energy transfer detection in living cells,” J. Biomed. Opt. 14(6), 060502 (2009).
[CrossRef]

D. Sud and M. A. Mycek, “Calibration and validation of an optical sensor for intracellular oxygen measurements,” J. Biomed. Opt. 14(2), 020506 (2009).
[CrossRef] [PubMed]

C. W. Chang, D. Sud, and M. A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods Cell Biol. 81, 495–524 (2007).
[CrossRef] [PubMed]

D. Sud, W. Zhong, D. G. Beer, and M. A. Mycek, “Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models,” Opt. Express 14(10), 4412–4426 (2006).
[CrossRef] [PubMed]

Neil, M. A. A.

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

Nelander, S.

B. Nilsson, M. Johansson, A. Heyden, S. Nelander, and T. Fioretos, “An improved method for detecting and delineating genomic regions with altered gene expression in cancer,” Genome Biol. 9(1), R13 (2008).
[CrossRef] [PubMed]

Neubauer, B.

J. Low, S. Huang, W. Blosser, M. Dowless, J. Burch, B. Neubauer, and L. Stancato, “High-content imaging characterization of cell cycle therapeutics through in vitro and in vivo subpopulation analysis,” Mol. Cancer Ther. 7(8), 2455–2463 (2008).
[CrossRef] [PubMed]

Nezzar, S.

E. Tadmor, S. Nezzar, and L. Vese, “A multiscale image representation using hierarchical (BV, L2) decompositions,” Multiscale Model. Simul. 2(4), 554–579 (2004).
[CrossRef]

Nilsson, B.

B. Nilsson, M. Johansson, A. Heyden, S. Nelander, and T. Fioretos, “An improved method for detecting and delineating genomic regions with altered gene expression in cancer,” Genome Biol. 9(1), R13 (2008).
[CrossRef] [PubMed]

Olivo-Marin, J. C.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69(4), 260–266 (2006).
[CrossRef] [PubMed]

Osher, S.

S. Osher, M. Burger, D. Goldfarb, J. J. Xu, and W. T. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005).
[CrossRef]

Owen, D. M.

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

Pelet, S.

S. Pelet, M. J. R. Previte, D. Kim, K. H. Kim, T. T. J. Su, and P. T. C. So, “Frequency domain lifetime and spectral imaging microscopy,” Microsc. Res. Tech. 69(11), 861–874 (2006).
[CrossRef] [PubMed]

Periasamy, A.

K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
[CrossRef] [PubMed]

Previte, M. J. R.

S. Pelet, M. J. R. Previte, D. Kim, K. H. Kim, T. T. J. Su, and P. T. C. So, “Frequency domain lifetime and spectral imaging microscopy,” Microsc. Res. Tech. 69(11), 861–874 (2006).
[CrossRef] [PubMed]

Radu, C.

C. Antczak, T. Takagi, C. N. Ramirez, C. Radu, and H. Djaballah, “Live-cell imaging of caspase activation for high-content screening,” J. Biomol. Screen. 14(8), 956–969 (2009).
[CrossRef] [PubMed]

Ramirez, C. N.

C. Antczak, T. Takagi, C. N. Ramirez, C. Radu, and H. Djaballah, “Live-cell imaging of caspase activation for high-content screening,” J. Biomol. Screen. 14(8), 956–969 (2009).
[CrossRef] [PubMed]

Reilhac, A.

J. Tohka and A. Reilhac, “Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method,” Neuroimage 39(4), 1570–1584 (2008).
[CrossRef]

Roux, P.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69(4), 260–266 (2006).
[CrossRef] [PubMed]

Sharman, K. K.

K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
[CrossRef] [PubMed]

Snow, N. H.

K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
[CrossRef] [PubMed]

So, P. T. C.

S. Pelet, M. J. R. Previte, D. Kim, K. H. Kim, T. T. J. Su, and P. T. C. So, “Frequency domain lifetime and spectral imaging microscopy,” Microsc. Res. Tech. 69(11), 861–874 (2006).
[CrossRef] [PubMed]

Sofou, A.

A. Sofou and P. Maragos, “Generalized flooding and Multicue PDE-based image segmentation,” IEEE Trans. Image Process. 17(3), 364–376 (2008).
[CrossRef] [PubMed]

Spring, B. Q.

B. Q. Spring and R. M. Clegg, “Image analysis for denoising full-field frequency-domain fluorescence lifetime images,” J. Microsc. (Oxford) 235(2), 221–237 (2009).
[CrossRef]

Stancato, L.

J. Low, S. Huang, W. Blosser, M. Dowless, J. Burch, B. Neubauer, and L. Stancato, “High-content imaging characterization of cell cycle therapeutics through in vitro and in vivo subpopulation analysis,” Mol. Cancer Ther. 7(8), 2455–2463 (2008).
[CrossRef] [PubMed]

Su, T. T. J.

S. Pelet, M. J. R. Previte, D. Kim, K. H. Kim, T. T. J. Su, and P. T. C. So, “Frequency domain lifetime and spectral imaging microscopy,” Microsc. Res. Tech. 69(11), 861–874 (2006).
[CrossRef] [PubMed]

Sud, D.

D. Sud and M. A. Mycek, “Calibration and validation of an optical sensor for intracellular oxygen measurements,” J. Biomed. Opt. 14(2), 020506 (2009).
[CrossRef] [PubMed]

C. W. Chang, D. Sud, and M. A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods Cell Biol. 81, 495–524 (2007).
[CrossRef] [PubMed]

D. Sud, W. Zhong, D. G. Beer, and M. A. Mycek, “Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models,” Opt. Express 14(10), 4412–4426 (2006).
[CrossRef] [PubMed]

Sun, C.

P. Vallotton, R. Lagerstrom, C. Sun, M. Buckley, D. D. Wang, M. De Silva, S. S. Tan, and J. A. Gunnersen, “Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision,” Cytometry A 71A(10), 889–895 (2007).
[CrossRef]

Swedlow, J. R.

J. R. Swedlow, I. G. Goldberg, K. W. Eliceiri, and OME Consortium, “Bioimage informatics for experimental biology,” Annu. Rev. Biophys. 38(1), 327–346 (2009).
[CrossRef] [PubMed]

Tadmor, E.

E. Tadmor, S. Nezzar, and L. Vese, “A multiscale image representation using hierarchical (BV, L2) decompositions,” Multiscale Model. Simul. 2(4), 554–579 (2004).
[CrossRef]

Takagi, T.

C. Antczak, T. Takagi, C. N. Ramirez, C. Radu, and H. Djaballah, “Live-cell imaging of caspase activation for high-content screening,” J. Biomol. Screen. 14(8), 956–969 (2009).
[CrossRef] [PubMed]

Talbot, C. B.

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

Tan, S. S.

P. Vallotton, R. Lagerstrom, C. Sun, M. Buckley, D. D. Wang, M. De Silva, S. S. Tan, and J. A. Gunnersen, “Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision,” Cytometry A 71A(10), 889–895 (2007).
[CrossRef]

Tohka, J.

J. Tohka and A. Reilhac, “Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method,” Neuroimage 39(4), 1570–1584 (2008).
[CrossRef]

Uchida, T.

Vallotton, P.

P. Vallotton, R. Lagerstrom, C. Sun, M. Buckley, D. D. Wang, M. De Silva, S. S. Tan, and J. A. Gunnersen, “Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision,” Cytometry A 71A(10), 889–895 (2007).
[CrossRef]

Van Sark, W. G. J. H. M.

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206(3), 218–224 (2002).
[CrossRef]

Vese, L.

E. Tadmor, S. Nezzar, and L. Vese, “A multiscale image representation using hierarchical (BV, L2) decompositions,” Multiscale Model. Simul. 2(4), 554–579 (2004).
[CrossRef]

Wabnitz, H.

I. Bugiel, K. König, and H. Wabnitz, “Investigation of cell by fluorescence laser scanning microscopy with subnanosecond time resolution,” Lasers Life Sci. 3, 47–53 (1989).

Wang, D. D.

P. Vallotton, R. Lagerstrom, C. Sun, M. Buckley, D. D. Wang, M. De Silva, S. S. Tan, and J. A. Gunnersen, “Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision,” Cytometry A 71A(10), 889–895 (2007).
[CrossRef]

Wang, X. F.

Williams, B. D.

C. Buranachai, D. Kamiyama, A. Chiba, B. D. Williams, and R. M. Clegg, “Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, image improvement and wavelet analysis,” J. Fluoresc. 18(5), 929–942 (2008).
[CrossRef] [PubMed]

Wu, C. N.

C. N. Wu, Y. Cheng, M. L. Liu, and Y. Jin, “Measurement of axisymmetric two-phase flows by an improved x-ray-computed tomography technique,” Ind. Eng. Chem. Res. 47(6), 2063–2074 (2008).
[CrossRef]

Wu, M.

C. W. Chang, M. Wu, S. D. Merajver, and M. A. Mycek, “Physiological fluorescence lifetime imaging microscopy improves Förster resonance energy transfer detection in living cells,” J. Biomed. Opt. 14(6), 060502 (2009).
[CrossRef]

Xu, J. J.

S. Osher, M. Burger, D. Goldfarb, J. J. Xu, and W. T. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005).
[CrossRef]

Yin, W. T.

S. Osher, M. Burger, D. Goldfarb, J. J. Xu, and W. T. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005).
[CrossRef]

Zerubia, J.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69(4), 260–266 (2006).
[CrossRef] [PubMed]

Zhang, W.

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

Zhong, W.

Zimmer, C.

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69(4), 260–266 (2006).
[CrossRef] [PubMed]

Anal. Chem. (1)

K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
[CrossRef] [PubMed]

Annu. Rev. Biophys. (1)

J. R. Swedlow, I. G. Goldberg, K. W. Eliceiri, and OME Consortium, “Bioimage informatics for experimental biology,” Annu. Rev. Biophys. 38(1), 327–346 (2009).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

Cytometry A (1)

P. Vallotton, R. Lagerstrom, C. Sun, M. Buckley, D. D. Wang, M. De Silva, S. S. Tan, and J. A. Gunnersen, “Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision,” Cytometry A 71A(10), 889–895 (2007).
[CrossRef]

Genome Biol. (1)

B. Nilsson, M. Johansson, A. Heyden, S. Nelander, and T. Fioretos, “An improved method for detecting and delineating genomic regions with altered gene expression in cancer,” Genome Biol. 9(1), R13 (2008).
[CrossRef] [PubMed]

IEEE Trans. Image Process. (1)

A. Sofou and P. Maragos, “Generalized flooding and Multicue PDE-based image segmentation,” IEEE Trans. Image Process. 17(3), 364–376 (2008).
[CrossRef] [PubMed]

Ind. Eng. Chem. Res. (1)

C. N. Wu, Y. Cheng, M. L. Liu, and Y. Jin, “Measurement of axisymmetric two-phase flows by an improved x-ray-computed tomography technique,” Ind. Eng. Chem. Res. 47(6), 2063–2074 (2008).
[CrossRef]

J. Biomed. Opt. (3)

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. X. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

C. W. Chang, M. Wu, S. D. Merajver, and M. A. Mycek, “Physiological fluorescence lifetime imaging microscopy improves Förster resonance energy transfer detection in living cells,” J. Biomed. Opt. 14(6), 060502 (2009).
[CrossRef]

D. Sud and M. A. Mycek, “Calibration and validation of an optical sensor for intracellular oxygen measurements,” J. Biomed. Opt. 14(2), 020506 (2009).
[CrossRef] [PubMed]

J. Biomol. Screen. (1)

C. Antczak, T. Takagi, C. N. Ramirez, C. Radu, and H. Djaballah, “Live-cell imaging of caspase activation for high-content screening,” J. Biomol. Screen. 14(8), 956–969 (2009).
[CrossRef] [PubMed]

J. Biophotonics (1)

C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J. Biophotonics 1(6), 514–521 (2008).
[CrossRef]

J. Fluoresc. (1)

C. Buranachai, D. Kamiyama, A. Chiba, B. D. Williams, and R. M. Clegg, “Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, image improvement and wavelet analysis,” J. Fluoresc. 18(5), 929–942 (2008).
[CrossRef] [PubMed]

J. Math. Imaging Vis. (1)

T. Le, R. Chartrand, and T. J. Asaki, “A variational approach to reconstructing images corrupted by poisson noise,” J. Math. Imaging Vis. 27(3), 257–263 (2007).
[CrossRef]

J. Microsc. (Oxford) (2)

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, and W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206(3), 218–224 (2002).
[CrossRef]

B. Q. Spring and R. M. Clegg, “Image analysis for denoising full-field frequency-domain fluorescence lifetime images,” J. Microsc. (Oxford) 235(2), 221–237 (2009).
[CrossRef]

Lasers Life Sci. (1)

I. Bugiel, K. König, and H. Wabnitz, “Investigation of cell by fluorescence laser scanning microscopy with subnanosecond time resolution,” Lasers Life Sci. 3, 47–53 (1989).

Methods Cell Biol. (1)

C. W. Chang, D. Sud, and M. A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods Cell Biol. 81, 495–524 (2007).
[CrossRef] [PubMed]

Microsc. Res. Tech. (2)

N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution,” Microsc. Res. Tech. 69(4), 260–266 (2006).
[CrossRef] [PubMed]

S. Pelet, M. J. R. Previte, D. Kim, K. H. Kim, T. T. J. Su, and P. T. C. So, “Frequency domain lifetime and spectral imaging microscopy,” Microsc. Res. Tech. 69(11), 861–874 (2006).
[CrossRef] [PubMed]

Mol. Cancer Ther. (1)

J. Low, S. Huang, W. Blosser, M. Dowless, J. Burch, B. Neubauer, and L. Stancato, “High-content imaging characterization of cell cycle therapeutics through in vitro and in vivo subpopulation analysis,” Mol. Cancer Ther. 7(8), 2455–2463 (2008).
[CrossRef] [PubMed]

Multiscale Model. Simul. (2)

S. Osher, M. Burger, D. Goldfarb, J. J. Xu, and W. T. Yin, “An iterative regularization method for total variation-based image restoration,” Multiscale Model. Simul. 4(2), 460–489 (2005).
[CrossRef]

E. Tadmor, S. Nezzar, and L. Vese, “A multiscale image representation using hierarchical (BV, L2) decompositions,” Multiscale Model. Simul. 2(4), 554–579 (2004).
[CrossRef]

Neuroimage (1)

J. Tohka and A. Reilhac, “Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method,” Neuroimage 39(4), 1570–1584 (2008).
[CrossRef]

Opt. Express (1)

Proc. SPIE (2)

C. W. Chang and M. A. Mycek, “Improving precision in time-gated FLIM for low-light live-cell imaging,” Proc. SPIE 7370, 7370091–7370096 (2009).

C. W. Chang and M. A. Mycek, “Increasing precision of lifetime determination in fluorescence lifetime imaging,” Proc. SPIE 7570, 757007 (2010).
[CrossRef]

Other (4)

C. W. Chang, “Improving Accuracy and Precision in Biological Applications of Fluorescence Lifetime Imaging Microscopy,” Ph.D. thesis, University of Michigan (2009).

C. Vonesch, “Fast and automated wavelet-regularized image restoration in fluorescence microscopy,” Ph.D. thesis, École Polytechnique Fédérale De Lausanne (2009).

J. Boulanger, J. B. Sibarita, C. Kervrann, and P. Bouthemy, “Non-parametric regression for patch-based fluorescence microscopy image sequence denoising,” 2008 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Vols 1–4, 748–751 (2008).

S. Delpretti, F. Luisier, S. Ramani, T. Blu, and M. Unser, “Multiframe SURE-LET denoising of timelapse fluorescence microscopy images,” 2008 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Vols 1–4, 149–152 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Concept of virtual gating of TCSPC data. The decay curves were constructed by photon emission histograms, to which virtual gating could be applied by summing up the values of the data points within each virtual gate to form a time-gated intensity image.

Fig. 4
Fig. 4

The lifetime maps of live LLC-PK1 cells expressing mEmerald-EB3 and mCherry-H2B, with only mEmerald being imaged: (a) undenoised and (d) lifetime-denoised, with TCSPC lifetime mapping (curve-fitting of the original TCSPC data); (b) undenoised, (e) lifetime-denoised, and (g) intensity-denoised, with four-gate lifetime mapping after non-optimal virtual gating (dt = 0.4 ns; g = 8 ns); (c) undenoised, (f) lifetime-denoised, and (h) intensity-denoised, with four-gate lifetime mapping after optimal virtual gating (dt = 2 ns; g = 8 ns). Intensity denoising was not applicable to the original, non-gated, TCSPC data for improving lifetime precision. The labeled RSD values were obtained from all pixels with lifetime values greater than 2 ns to remove the variations from the background values. For better comparisons, “reject” (see section 2.3) was set to 100 for non-optimal virtual gating and was set to 15 for optimal virtual gating. Scale bar: 5 μm.

Fig. 2
Fig. 2

The precision of lifetime determination in TCSPC FLIM was improved by either (a) lifetime denoising, where the estimated variance of lifetime values was used in VWTV for denoising of lifetime maps, or (b) intensity denoising, where FWTV was used for denoising of each intensity image before four-gate lifetime mapping.

Fig. 3
Fig. 3

The Var(f) image (values in ns2) used in VWTV denoising (Eq. (3)) of the lifetime map of the live-cell sample (section 2.1) after TCSPC lifetime mapping (see Fig. 2 (a)). The variance was first assumed to be dependent on local τ and total photon counts (TC) values, and the variance value of each pixel was then determined to be 227.677 × τ 2 / (256 × TC0.72) from the regression analysis of three uniform regions sampled: 256 was the number of bins used in the histogram of single photon collections in TCSPC; the exponent of 0.72 was chosen to make the average predicted proportional constant 227.677 stay within the minimum error of 0.03% among all the predictions from the three uniform regions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ p = N ( t i 2 ) ( t i ) 2 N t i ln I i , p ( t i ) ( ln I i , p ) ,
R S D τ = 1 20 ( d t τ ) [ 1 T C ( 1 exp ( g τ ) ) ( 36 + 4 exp ( d t τ ) + 4 exp ( 2 d t τ ) + 36 exp ( 3 d t τ ) ) ] 1 2 ,
E = Ω | u | d x d y + λ Ω ( f u ) 2 V a r ( f ) d x d y ,

Metrics