Abstract

Bottle resonators can support high Q-factor whispering gallery modes (WGMs) and demonstrate a rich mode spectrum. Resonators were fabricated using a fiber tapering apparatus and were coated with a thin, smooth layer of luminescent silicon nanocrystals. The photoluminescence spectrum showed WGM peaks with Q-factors near 2,500; however, evanescent measurements showed that these modes are a composite of many modes with Q-factors exceeding 106, the highest yet seen for a silicon-nanocrystal-coated microresonators. The mode structure showed strong polarization and sensitivity to position within the bottle resonator. An analysis of loss mechanisms establishes surface roughness scattering as the limiting factor in these nanocrystal-coated bottle resonators in the absence of excited carriers.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct-bandgap luminescence at room-temperature from highly-strained Germanium nanocrystals

Latha Nataraj, Fan Xu, and Sylvain G. Cloutier
Opt. Express 18(7) 7085-7091 (2010)

Blue-green luminescent silicon nanocrystals fabricated by nanosecond pulsed laser ablation in dimethyl sulfoxide

N. Mansour, A. Momeni, R. Karimzadeh, and M. Amini
Opt. Mater. Express 2(6) 740-748 (2012)

Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator

Mher Ghulinyan, Daniel Navarro-Urrios, Alessandro Pitanti, Alberto Lui, Georg Pucker, and Lorenzo Pavesi
Opt. Express 16(17) 13218-13224 (2008)

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi, “Silicon-Based light sources for silicon integrated circuits,” Adv. Opt. Technol. 2008, 416926 (2008).
  2. D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon nanocrystals with ensemble quantum yields exceeding 60%,” Appl. Phys. Lett. 88, 233116 (2006).
    [Crossref]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
    [Crossref] [PubMed]
  4. M. Cazzanelli, D. Navarro-Urríos, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gosele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96, 3164–3171 (2004).
    [Crossref]
  5. A. Polman and R. G. Elliman, Towards the first silicon laser, vol. 93 of NATO Science Series (Kluwer Academic Publishers, The Netherlands, 2003).
  6. P. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27, 745–749 (2005).
    [Crossref]
  7. P. Bianucci, J. R. Rodríguez, C. M. Clements, J. G. C. Veinot, and A. Meldrum, “Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers,” J. Appl. Phys. 105, 023108 (2009).
    [Crossref]
  8. H. Chen, J. Sung, A. Tewary, M. Brongersma, J. Shin, and P. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in “Group IV Photonics, 2005. 2nd IEEE International Conference on,” (2005), pp. 99–101.
  9. A. Beltaos and A. Meldrum, “Whispering gallery modes in silicon-nanocrystal-coated silica microspheres,” J. Lumin. 126, 607–613 (2007).
    [Crossref]
  10. A. Tewary, M. J. F. Digonnet, J. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-Nanocrystal-Coated silica microsphere thermooptical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
    [Crossref]
  11. R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78, 023829 (2008).
    [Crossref]
  12. M. Ghulinyan, D. Navarro-Urríos, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi, “Whispering-gallery modes and light emission from a si-nanocrystal-based single microdisk resonator,” Opt. Express 16, 13218–13224 (2008).
    [Crossref] [PubMed]
  13. C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
    [Crossref] [PubMed]
  14. S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94, 081101 (2009).
    [Crossref]
  15. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultra-high-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
    [Crossref] [PubMed]
  16. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. L. Roux, and P. S. J. Russell, “Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,” Opt. Lett. 26, 1137–1139 (2001).
    [Crossref]
  17. C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-si/sio2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19, 3513–3516 (2007).
    [Crossref]
  18. T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96, 077403 (2006).
    [Crossref] [PubMed]
  19. Y. Rakovich, S. Balakrishnan, J. Donegan, T. Perova, R. Moore, and Y. Gun’ko, “The fabrication, fluorescence dynamics, and whispering gallery modes of aluminosilicate microtube resonators,” Adv. Funct. Mater. 17, 1106 (2007).
    [Crossref]
  20. L. Guimarães and J. De Mendonça, “Analysis of the resonant scattering of light by cylinders at oblique incidence,” Appl. Opt. 36, 8010–8019 (1997).
    [Crossref]
  21. P. Bianucci, J. Rodríguez, F. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of si-nc in cylindrical microcavities,” Physica E 41, 1107 (2009).
    [Crossref]
  22. Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72, 031801 (2005).
    [Crossref]
  23. I. Teraoka and S. Arnold, “Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer,” J. Opt. Soc. Am. B 23, 1434–1441 (2006).
    [Crossref]
  24. R. Kekatpure and M. Brongersma, “Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity,” Nano. Lett. 8, 3787–3793 (2008).
    [Crossref] [PubMed]
  25. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
    [Crossref]
  26. J. R. Rodríguez, P. Bianucci, A. Meldrum, and J. G. C. Veinot, “Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals,” Appl. Phys. Lett. 92, 131119 (2008).
    [Crossref]
  27. N. Daldosso, M. Melchiorri, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarouci, X. Portier, and C. Dufour, “Optical losses and absorption cross-section of silicon nanocrystals,” J. Lumin. 121, 344 (2006).
    [Crossref]
  28. J. D. Jackson, Classical electrodynamics; 3rd ed. (Wiley, New York, NY, 1998).
    [PubMed]
  29. A. Meldrum, P. Bianucci, and F. Marsiglio, “Purcell effect in inhomogenously broadened ensembles of quantum dots coupled to optical microcavities,” (2010).
  30. L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82, 4636–4638 (2003).
    [Crossref]
  31. L. T. Canham, “Luminescence bands and their proposed origins in highly porous silicon,” Phys. Status Solidi B 190, 9–14 (1995).
    [Crossref]
  32. L. Tsybeskov, J. Vandyshev, and P. Fauchet, “Blue emission in porous silicon - oxygen-related photoluminescence,” Phys. Rev. B 49, 7821–7824 (1994).
    [Crossref]
  33. O. Schmidt, P. Kiesel, S. Mohta, and N. Johnson, “Resolving pm wavelength shifts in optical sensing,” Appl. Phys. B 86, 593–600 (2007).
    [Crossref]
  34. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 429–493 (2008).
    [Crossref]
  35. R. F. Egerton, “New techniques in electron energy-loss spectroscopy,” Micron 34, 127–129 (2003).
    [Crossref] [PubMed]

2009 (4)

P. Bianucci, J. R. Rodríguez, C. M. Clements, J. G. C. Veinot, and A. Meldrum, “Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers,” J. Appl. Phys. 105, 023108 (2009).
[Crossref]

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94, 081101 (2009).
[Crossref]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultra-high-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

P. Bianucci, J. Rodríguez, F. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of si-nc in cylindrical microcavities,” Physica E 41, 1107 (2009).
[Crossref]

2008 (7)

R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78, 023829 (2008).
[Crossref]

M. Ghulinyan, D. Navarro-Urríos, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi, “Whispering-gallery modes and light emission from a si-nanocrystal-based single microdisk resonator,” Opt. Express 16, 13218–13224 (2008).
[Crossref] [PubMed]

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref] [PubMed]

L. Pavesi, “Silicon-Based light sources for silicon integrated circuits,” Adv. Opt. Technol. 2008, 416926 (2008).

J. R. Rodríguez, P. Bianucci, A. Meldrum, and J. G. C. Veinot, “Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals,” Appl. Phys. Lett. 92, 131119 (2008).
[Crossref]

R. Kekatpure and M. Brongersma, “Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity,” Nano. Lett. 8, 3787–3793 (2008).
[Crossref] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 429–493 (2008).
[Crossref]

2007 (4)

O. Schmidt, P. Kiesel, S. Mohta, and N. Johnson, “Resolving pm wavelength shifts in optical sensing,” Appl. Phys. B 86, 593–600 (2007).
[Crossref]

A. Beltaos and A. Meldrum, “Whispering gallery modes in silicon-nanocrystal-coated silica microspheres,” J. Lumin. 126, 607–613 (2007).
[Crossref]

Y. Rakovich, S. Balakrishnan, J. Donegan, T. Perova, R. Moore, and Y. Gun’ko, “The fabrication, fluorescence dynamics, and whispering gallery modes of aluminosilicate microtube resonators,” Adv. Funct. Mater. 17, 1106 (2007).
[Crossref]

C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-si/sio2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19, 3513–3516 (2007).
[Crossref]

2006 (5)

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96, 077403 (2006).
[Crossref] [PubMed]

A. Tewary, M. J. F. Digonnet, J. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-Nanocrystal-Coated silica microsphere thermooptical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
[Crossref]

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon nanocrystals with ensemble quantum yields exceeding 60%,” Appl. Phys. Lett. 88, 233116 (2006).
[Crossref]

I. Teraoka and S. Arnold, “Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer,” J. Opt. Soc. Am. B 23, 1434–1441 (2006).
[Crossref]

N. Daldosso, M. Melchiorri, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarouci, X. Portier, and C. Dufour, “Optical losses and absorption cross-section of silicon nanocrystals,” J. Lumin. 121, 344 (2006).
[Crossref]

2005 (2)

P. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27, 745–749 (2005).
[Crossref]

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72, 031801 (2005).
[Crossref]

2004 (1)

M. Cazzanelli, D. Navarro-Urríos, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gosele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96, 3164–3171 (2004).
[Crossref]

2003 (2)

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82, 4636–4638 (2003).
[Crossref]

R. F. Egerton, “New techniques in electron energy-loss spectroscopy,” Micron 34, 127–129 (2003).
[Crossref] [PubMed]

2001 (1)

2000 (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

1997 (1)

1995 (1)

L. T. Canham, “Luminescence bands and their proposed origins in highly porous silicon,” Phys. Status Solidi B 190, 9–14 (1995).
[Crossref]

1994 (2)

L. Tsybeskov, J. Vandyshev, and P. Fauchet, “Blue emission in porous silicon - oxygen-related photoluminescence,” Phys. Rev. B 49, 7821–7824 (1994).
[Crossref]

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Arnold, S.

Balakrishnan, S.

Y. Rakovich, S. Balakrishnan, J. Donegan, T. Perova, R. Moore, and Y. Gun’ko, “The fabrication, fluorescence dynamics, and whispering gallery modes of aluminosilicate microtube resonators,” Adv. Funct. Mater. 17, 1106 (2007).
[Crossref]

Belarouci, A.

N. Daldosso, M. Melchiorri, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarouci, X. Portier, and C. Dufour, “Optical losses and absorption cross-section of silicon nanocrystals,” J. Lumin. 121, 344 (2006).
[Crossref]

Beltaos, A.

A. Beltaos and A. Meldrum, “Whispering gallery modes in silicon-nanocrystal-coated silica microspheres,” J. Lumin. 126, 607–613 (2007).
[Crossref]

Bianucci, P.

P. Bianucci, J. R. Rodríguez, C. M. Clements, J. G. C. Veinot, and A. Meldrum, “Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers,” J. Appl. Phys. 105, 023108 (2009).
[Crossref]

P. Bianucci, J. Rodríguez, F. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of si-nc in cylindrical microcavities,” Physica E 41, 1107 (2009).
[Crossref]

J. R. Rodríguez, P. Bianucci, A. Meldrum, and J. G. C. Veinot, “Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals,” Appl. Phys. Lett. 92, 131119 (2008).
[Crossref]

A. Meldrum, P. Bianucci, and F. Marsiglio, “Purcell effect in inhomogenously broadened ensembles of quantum dots coupled to optical microcavities,” (2010).

Birks, T. A.

Brongersma, M.

R. Kekatpure and M. Brongersma, “Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity,” Nano. Lett. 8, 3787–3793 (2008).
[Crossref] [PubMed]

H. Chen, J. Sung, A. Tewary, M. Brongersma, J. Shin, and P. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in “Group IV Photonics, 2005. 2nd IEEE International Conference on,” (2005), pp. 99–101.

Brongersma, M. L.

R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78, 023829 (2008).
[Crossref]

A. Tewary, M. J. F. Digonnet, J. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-Nanocrystal-Coated silica microsphere thermooptical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
[Crossref]

Canham, L. T.

L. T. Canham, “Luminescence bands and their proposed origins in highly porous silicon,” Phys. Status Solidi B 190, 9–14 (1995).
[Crossref]

Cazzaneli, M.

P. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27, 745–749 (2005).
[Crossref]

Cazzanelli, M.

M. Cazzanelli, D. Navarro-Urríos, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gosele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96, 3164–3171 (2004).
[Crossref]

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82, 4636–4638 (2003).
[Crossref]

Chausserie, S.

N. Daldosso, M. Melchiorri, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarouci, X. Portier, and C. Dufour, “Optical losses and absorption cross-section of silicon nanocrystals,” J. Lumin. 121, 344 (2006).
[Crossref]

Chen, H.

P. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27, 745–749 (2005).
[Crossref]

H. Chen, J. Sung, A. Tewary, M. Brongersma, J. Shin, and P. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in “Group IV Photonics, 2005. 2nd IEEE International Conference on,” (2005), pp. 99–101.

Clements, C. M.

P. Bianucci, J. R. Rodríguez, C. M. Clements, J. G. C. Veinot, and A. Meldrum, “Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers,” J. Appl. Phys. 105, 023108 (2009).
[Crossref]

Dal Negro, L.

P. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27, 745–749 (2005).
[Crossref]

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82, 4636–4638 (2003).
[Crossref]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Daldosso, N.

N. Daldosso, M. Melchiorri, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarouci, X. Portier, and C. Dufour, “Optical losses and absorption cross-section of silicon nanocrystals,” J. Lumin. 121, 344 (2006).
[Crossref]

M. Cazzanelli, D. Navarro-Urríos, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gosele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96, 3164–3171 (2004).
[Crossref]

De Mendonça, J.

Digonnet, M. J. F.

A. Tewary, M. J. F. Digonnet, J. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-Nanocrystal-Coated silica microsphere thermooptical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
[Crossref]

Dimmick, T. E.

Donegan, J.

Y. Rakovich, S. Balakrishnan, J. Donegan, T. Perova, R. Moore, and Y. Gun’ko, “The fabrication, fluorescence dynamics, and whispering gallery modes of aluminosilicate microtube resonators,” Adv. Funct. Mater. 17, 1106 (2007).
[Crossref]

Dufour, C.

N. Daldosso, M. Melchiorri, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarouci, X. Portier, and C. Dufour, “Optical losses and absorption cross-section of silicon nanocrystals,” J. Lumin. 121, 344 (2006).
[Crossref]

Egerton, R. F.

R. F. Egerton, “New techniques in electron energy-loss spectroscopy,” Micron 34, 127–129 (2003).
[Crossref] [PubMed]

Elliman, R.

P. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27, 745–749 (2005).
[Crossref]

Elliman, R. G.

A. Polman and R. G. Elliman, Towards the first silicon laser, vol. 93 of NATO Science Series (Kluwer Academic Publishers, The Netherlands, 2003).

Fauchet, P.

P. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27, 745–749 (2005).
[Crossref]

L. Tsybeskov, J. Vandyshev, and P. Fauchet, “Blue emission in porous silicon - oxygen-related photoluminescence,” Phys. Rev. B 49, 7821–7824 (1994).
[Crossref]

H. Chen, J. Sung, A. Tewary, M. Brongersma, J. Shin, and P. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in “Group IV Photonics, 2005. 2nd IEEE International Conference on,” (2005), pp. 99–101.

Franzo, G.

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82, 4636–4638 (2003).
[Crossref]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Ghulinyan, M.

Gosele, U.

M. Cazzanelli, D. Navarro-Urríos, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gosele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96, 3164–3171 (2004).
[Crossref]

Gourbilleau, F.

N. Daldosso, M. Melchiorri, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarouci, X. Portier, and C. Dufour, “Optical losses and absorption cross-section of silicon nanocrystals,” J. Lumin. 121, 344 (2006).
[Crossref]

Guimarães, L.

Gun’ko, Y.

Y. Rakovich, S. Balakrishnan, J. Donegan, T. Perova, R. Moore, and Y. Gun’ko, “The fabrication, fluorescence dynamics, and whispering gallery modes of aluminosilicate microtube resonators,” Adv. Funct. Mater. 17, 1106 (2007).
[Crossref]

Heitmann, D.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref] [PubMed]

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96, 077403 (2006).
[Crossref] [PubMed]

Heitmann, J.

M. Cazzanelli, D. Navarro-Urríos, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gosele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96, 3164–3171 (2004).
[Crossref]

Hessel, C. M.

C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-si/sio2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19, 3513–3516 (2007).
[Crossref]

Heyn, C.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref] [PubMed]

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96, 077403 (2006).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 429–493 (2008).
[Crossref]

Iacona, F.

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82, 4636–4638 (2003).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical electrodynamics; 3rd ed. (Wiley, New York, NY, 1998).
[PubMed]

Johnson, N.

O. Schmidt, P. Kiesel, S. Mohta, and N. Johnson, “Resolving pm wavelength shifts in optical sensing,” Appl. Phys. B 86, 593–600 (2007).
[Crossref]

Jurbergs, D.

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon nanocrystals with ensemble quantum yields exceeding 60%,” Appl. Phys. Lett. 88, 233116 (2006).
[Crossref]

Kakarantzas, G.

Kekatpure, R.

R. Kekatpure and M. Brongersma, “Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity,” Nano. Lett. 8, 3787–3793 (2008).
[Crossref] [PubMed]

Kekatpure, R. D.

R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78, 023829 (2008).
[Crossref]

Kiesel, P.

O. Schmidt, P. Kiesel, S. Mohta, and N. Johnson, “Resolving pm wavelength shifts in optical sensing,” Appl. Phys. B 86, 593–600 (2007).
[Crossref]

Kipp, T.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref] [PubMed]

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96, 077403 (2006).
[Crossref] [PubMed]

Kortshagen, U.

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon nanocrystals with ensemble quantum yields exceeding 60%,” Appl. Phys. Lett. 88, 233116 (2006).
[Crossref]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Lenz, F.

P. Bianucci, J. Rodríguez, F. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of si-nc in cylindrical microcavities,” Physica E 41, 1107 (2009).
[Crossref]

Li, F.

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94, 081101 (2009).
[Crossref]

Louyer, Y.

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72, 031801 (2005).
[Crossref]

Lui, A.

Luther-Davies, B.

P. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27, 745–749 (2005).
[Crossref]

Malac, M.

C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-si/sio2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19, 3513–3516 (2007).
[Crossref]

Mangolini, L.

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon nanocrystals with ensemble quantum yields exceeding 60%,” Appl. Phys. Lett. 88, 233116 (2006).
[Crossref]

Marsiglio, F.

A. Meldrum, P. Bianucci, and F. Marsiglio, “Purcell effect in inhomogenously broadened ensembles of quantum dots coupled to optical microcavities,” (2010).

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Melchiorri, M.

N. Daldosso, M. Melchiorri, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarouci, X. Portier, and C. Dufour, “Optical losses and absorption cross-section of silicon nanocrystals,” J. Lumin. 121, 344 (2006).
[Crossref]

Meldrum, A.

P. Bianucci, J. Rodríguez, F. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of si-nc in cylindrical microcavities,” Physica E 41, 1107 (2009).
[Crossref]

P. Bianucci, J. R. Rodríguez, C. M. Clements, J. G. C. Veinot, and A. Meldrum, “Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers,” J. Appl. Phys. 105, 023108 (2009).
[Crossref]

J. R. Rodríguez, P. Bianucci, A. Meldrum, and J. G. C. Veinot, “Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals,” Appl. Phys. Lett. 92, 131119 (2008).
[Crossref]

C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-si/sio2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19, 3513–3516 (2007).
[Crossref]

A. Beltaos and A. Meldrum, “Whispering gallery modes in silicon-nanocrystal-coated silica microspheres,” J. Lumin. 126, 607–613 (2007).
[Crossref]

A. Meldrum, P. Bianucci, and F. Marsiglio, “Purcell effect in inhomogenously broadened ensembles of quantum dots coupled to optical microcavities,” (2010).

Meschede, D.

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72, 031801 (2005).
[Crossref]

Mi, Z.

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94, 081101 (2009).
[Crossref]

Mohta, S.

O. Schmidt, P. Kiesel, S. Mohta, and N. Johnson, “Resolving pm wavelength shifts in optical sensing,” Appl. Phys. B 86, 593–600 (2007).
[Crossref]

Moore, R.

Y. Rakovich, S. Balakrishnan, J. Donegan, T. Perova, R. Moore, and Y. Gun’ko, “The fabrication, fluorescence dynamics, and whispering gallery modes of aluminosilicate microtube resonators,” Adv. Funct. Mater. 17, 1106 (2007).
[Crossref]

Navarro-Urríos, D.

M. Ghulinyan, D. Navarro-Urríos, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi, “Whispering-gallery modes and light emission from a si-nanocrystal-based single microdisk resonator,” Opt. Express 16, 13218–13224 (2008).
[Crossref] [PubMed]

M. Cazzanelli, D. Navarro-Urríos, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gosele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96, 3164–3171 (2004).
[Crossref]

O’Shea, D.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultra-high-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

Ossicini, S.

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82, 4636–4638 (2003).
[Crossref]

Pacifici, D.

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82, 4636–4638 (2003).
[Crossref]

Pavesi, L.

L. Pavesi, “Silicon-Based light sources for silicon integrated circuits,” Adv. Opt. Technol. 2008, 416926 (2008).

M. Ghulinyan, D. Navarro-Urríos, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi, “Whispering-gallery modes and light emission from a si-nanocrystal-based single microdisk resonator,” Opt. Express 16, 13218–13224 (2008).
[Crossref] [PubMed]

N. Daldosso, M. Melchiorri, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarouci, X. Portier, and C. Dufour, “Optical losses and absorption cross-section of silicon nanocrystals,” J. Lumin. 121, 344 (2006).
[Crossref]

P. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27, 745–749 (2005).
[Crossref]

M. Cazzanelli, D. Navarro-Urríos, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gosele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96, 3164–3171 (2004).
[Crossref]

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82, 4636–4638 (2003).
[Crossref]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Perova, T.

Y. Rakovich, S. Balakrishnan, J. Donegan, T. Perova, R. Moore, and Y. Gun’ko, “The fabrication, fluorescence dynamics, and whispering gallery modes of aluminosilicate microtube resonators,” Adv. Funct. Mater. 17, 1106 (2007).
[Crossref]

Pitanti, A.

Pöllinger, M.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultra-high-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

Polman, A.

A. Polman and R. G. Elliman, Towards the first silicon laser, vol. 93 of NATO Science Series (Kluwer Academic Publishers, The Netherlands, 2003).

Portier, X.

N. Daldosso, M. Melchiorri, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarouci, X. Portier, and C. Dufour, “Optical losses and absorption cross-section of silicon nanocrystals,” J. Lumin. 121, 344 (2006).
[Crossref]

Priolo, F.

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82, 4636–4638 (2003).
[Crossref]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Pucker, G.

M. Ghulinyan, D. Navarro-Urríos, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi, “Whispering-gallery modes and light emission from a si-nanocrystal-based single microdisk resonator,” Opt. Express 16, 13218–13224 (2008).
[Crossref] [PubMed]

N. Daldosso, M. Melchiorri, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarouci, X. Portier, and C. Dufour, “Optical losses and absorption cross-section of silicon nanocrystals,” J. Lumin. 121, 344 (2006).
[Crossref]

Rakovich, Y.

Y. Rakovich, S. Balakrishnan, J. Donegan, T. Perova, R. Moore, and Y. Gun’ko, “The fabrication, fluorescence dynamics, and whispering gallery modes of aluminosilicate microtube resonators,” Adv. Funct. Mater. 17, 1106 (2007).
[Crossref]

Rauschenbeutel, A.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultra-high-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72, 031801 (2005).
[Crossref]

Rehberg, H.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref] [PubMed]

Riboli, F.

M. Cazzanelli, D. Navarro-Urríos, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gosele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96, 3164–3171 (2004).
[Crossref]

Rodríguez, J.

P. Bianucci, J. Rodríguez, F. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of si-nc in cylindrical microcavities,” Physica E 41, 1107 (2009).
[Crossref]

Rodríguez, J. R.

P. Bianucci, J. R. Rodríguez, C. M. Clements, J. G. C. Veinot, and A. Meldrum, “Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers,” J. Appl. Phys. 105, 023108 (2009).
[Crossref]

J. R. Rodríguez, P. Bianucci, A. Meldrum, and J. G. C. Veinot, “Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals,” Appl. Phys. Lett. 92, 131119 (2008).
[Crossref]

Rogojina, E.

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon nanocrystals with ensemble quantum yields exceeding 60%,” Appl. Phys. Lett. 88, 233116 (2006).
[Crossref]

Roux, R. L.

Ruan, J.

P. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27, 745–749 (2005).
[Crossref]

Russell, P. S. J.

Samoc, M.

P. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27, 745–749 (2005).
[Crossref]

Schmidt, O.

O. Schmidt, P. Kiesel, S. Mohta, and N. Johnson, “Resolving pm wavelength shifts in optical sensing,” Appl. Phys. B 86, 593–600 (2007).
[Crossref]

Scholz, R.

M. Cazzanelli, D. Navarro-Urríos, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gosele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96, 3164–3171 (2004).
[Crossref]

Schultz, C. M.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref] [PubMed]

Shin, J.

H. Chen, J. Sung, A. Tewary, M. Brongersma, J. Shin, and P. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in “Group IV Photonics, 2005. 2nd IEEE International Conference on,” (2005), pp. 99–101.

Shin, J. H.

A. Tewary, M. J. F. Digonnet, J. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-Nanocrystal-Coated silica microsphere thermooptical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
[Crossref]

Smith, N.

P. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27, 745–749 (2005).
[Crossref]

Strelow, C.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref] [PubMed]

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96, 077403 (2006).
[Crossref] [PubMed]

Summers, M. A.

C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-si/sio2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19, 3513–3516 (2007).
[Crossref]

Sung, J.

A. Tewary, M. J. F. Digonnet, J. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-Nanocrystal-Coated silica microsphere thermooptical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
[Crossref]

H. Chen, J. Sung, A. Tewary, M. Brongersma, J. Shin, and P. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in “Group IV Photonics, 2005. 2nd IEEE International Conference on,” (2005), pp. 99–101.

Teraoka, I.

Tewary, A.

A. Tewary, M. J. F. Digonnet, J. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-Nanocrystal-Coated silica microsphere thermooptical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
[Crossref]

H. Chen, J. Sung, A. Tewary, M. Brongersma, J. Shin, and P. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in “Group IV Photonics, 2005. 2nd IEEE International Conference on,” (2005), pp. 99–101.

Tsybeskov, L.

L. Tsybeskov, J. Vandyshev, and P. Fauchet, “Blue emission in porous silicon - oxygen-related photoluminescence,” Phys. Rev. B 49, 7821–7824 (1994).
[Crossref]

Vandyshev, J.

L. Tsybeskov, J. Vandyshev, and P. Fauchet, “Blue emission in porous silicon - oxygen-related photoluminescence,” Phys. Rev. B 49, 7821–7824 (1994).
[Crossref]

Veinot, J. G. C.

P. Bianucci, J. Rodríguez, F. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of si-nc in cylindrical microcavities,” Physica E 41, 1107 (2009).
[Crossref]

P. Bianucci, J. R. Rodríguez, C. M. Clements, J. G. C. Veinot, and A. Meldrum, “Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers,” J. Appl. Phys. 105, 023108 (2009).
[Crossref]

J. R. Rodríguez, P. Bianucci, A. Meldrum, and J. G. C. Veinot, “Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals,” Appl. Phys. Lett. 92, 131119 (2008).
[Crossref]

C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-si/sio2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19, 3513–3516 (2007).
[Crossref]

Vicknesh, S.

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94, 081101 (2009).
[Crossref]

Warken, F.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultra-high-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

Welsch, H.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref] [PubMed]

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96, 077403 (2006).
[Crossref] [PubMed]

Yi, L. X.

M. Cazzanelli, D. Navarro-Urríos, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gosele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96, 3164–3171 (2004).
[Crossref]

Zacharias, M.

M. Cazzanelli, D. Navarro-Urríos, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gosele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96, 3164–3171 (2004).
[Crossref]

Adv. Funct. Mater. (1)

Y. Rakovich, S. Balakrishnan, J. Donegan, T. Perova, R. Moore, and Y. Gun’ko, “The fabrication, fluorescence dynamics, and whispering gallery modes of aluminosilicate microtube resonators,” Adv. Funct. Mater. 17, 1106 (2007).
[Crossref]

Adv. Mater. (1)

C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-si/sio2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. 19, 3513–3516 (2007).
[Crossref]

Adv. Opt. Technol. (1)

L. Pavesi, “Silicon-Based light sources for silicon integrated circuits,” Adv. Opt. Technol. 2008, 416926 (2008).

Appl. Opt. (1)

Appl. Phys. B (1)

O. Schmidt, P. Kiesel, S. Mohta, and N. Johnson, “Resolving pm wavelength shifts in optical sensing,” Appl. Phys. B 86, 593–600 (2007).
[Crossref]

Appl. Phys. Lett. (4)

J. R. Rodríguez, P. Bianucci, A. Meldrum, and J. G. C. Veinot, “Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals,” Appl. Phys. Lett. 92, 131119 (2008).
[Crossref]

L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo, and F. Iacona, “Dynamics of stimulated emission in silicon nanocrystals,” Appl. Phys. Lett. 82, 4636–4638 (2003).
[Crossref]

D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, “Silicon nanocrystals with ensemble quantum yields exceeding 60%,” Appl. Phys. Lett. 88, 233116 (2006).
[Crossref]

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94, 081101 (2009).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 429–493 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Tewary, M. J. F. Digonnet, J. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-Nanocrystal-Coated silica microsphere thermooptical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006).
[Crossref]

J. Appl. Phys. (2)

M. Cazzanelli, D. Navarro-Urríos, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gosele, “Optical gain in monodispersed silicon nanocrystals,” J. Appl. Phys. 96, 3164–3171 (2004).
[Crossref]

P. Bianucci, J. R. Rodríguez, C. M. Clements, J. G. C. Veinot, and A. Meldrum, “Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers,” J. Appl. Phys. 105, 023108 (2009).
[Crossref]

J. Lumin. (2)

A. Beltaos and A. Meldrum, “Whispering gallery modes in silicon-nanocrystal-coated silica microspheres,” J. Lumin. 126, 607–613 (2007).
[Crossref]

N. Daldosso, M. Melchiorri, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarouci, X. Portier, and C. Dufour, “Optical losses and absorption cross-section of silicon nanocrystals,” J. Lumin. 121, 344 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Micron (1)

R. F. Egerton, “New techniques in electron energy-loss spectroscopy,” Micron 34, 127–129 (2003).
[Crossref] [PubMed]

Nano. Lett. (1)

R. Kekatpure and M. Brongersma, “Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity,” Nano. Lett. 8, 3787–3793 (2008).
[Crossref] [PubMed]

Nature (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

P. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, “Optical gain in different silicon nanocrystal systems,” Opt. Mater. 27, 745–749 (2005).
[Crossref]

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Phys. Rev. A (2)

R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78, 023829 (2008).
[Crossref]

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72, 031801 (2005).
[Crossref]

Phys. Rev. B (1)

L. Tsybeskov, J. Vandyshev, and P. Fauchet, “Blue emission in porous silicon - oxygen-related photoluminescence,” Phys. Rev. B 49, 7821–7824 (1994).
[Crossref]

Phys. Rev. Lett. (3)

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101, 127403 (2008).
[Crossref] [PubMed]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultra-high-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref] [PubMed]

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96, 077403 (2006).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

L. T. Canham, “Luminescence bands and their proposed origins in highly porous silicon,” Phys. Status Solidi B 190, 9–14 (1995).
[Crossref]

Physica E (1)

P. Bianucci, J. Rodríguez, F. Lenz, J. G. C. Veinot, and A. Meldrum, “Mode structure in the luminescence of si-nc in cylindrical microcavities,” Physica E 41, 1107 (2009).
[Crossref]

Other (4)

J. D. Jackson, Classical electrodynamics; 3rd ed. (Wiley, New York, NY, 1998).
[PubMed]

A. Meldrum, P. Bianucci, and F. Marsiglio, “Purcell effect in inhomogenously broadened ensembles of quantum dots coupled to optical microcavities,” (2010).

H. Chen, J. Sung, A. Tewary, M. Brongersma, J. Shin, and P. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in “Group IV Photonics, 2005. 2nd IEEE International Conference on,” (2005), pp. 99–101.

A. Polman and R. G. Elliman, Towards the first silicon laser, vol. 93 of NATO Science Series (Kluwer Academic Publishers, The Netherlands, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Optical image of a bottle resonator. The scale bar represents 100 μm. (b) Photoluminescence (PL) emitted by the same resonator under evanescent excitation. (c, d) PL spectra collected at different resonator positions and different detection polarizations, after removing a constant background.

Fig. 2.
Fig. 2.

(a) Transmission spectrum of the optical resonator from Fig. 1 (black) compared to a magnified section of the PL spectrum (red). (b) Detail of the transmission spectrum, showing a rich structure with many resonant modes. (c) Detail of the marked box, including lorentzian fits to the transmission dips. The measured Q-factors are, from left to right, 1.1×106, 1.2×106, 9.9×105, 9.2×105 and 8.3×105.

Fig. 3.
Fig. 3.

(a) Pictorial representation of the ray trajectory of a spiral mode in a bottle resonator. The curvature of the surface is exaggerated for a clearer presentation. (b) PL spectrum (black) compared to the mode structure calculated from Eq. (2) and the parameters given in the text (red). The numbers in the graph represent selected m, q pairs. The calculation includes values of q up to 20 for clarity. The slight mismatch in the free spectral range between the PL spectrum and the theoretical peak positions may be due to the effect of the film coating, as well as any errors in the determination of the resonator profile

Fig. 4.
Fig. 4.

(a) Transmission spectra of a resonator excited by a focused free-space Ar+ pump laser at different pump excitation intensities. (b) Intensity dependence of the FWHM of the resonant mode indicated with an arrow in the top panel. The error bars indicate the error from fitting the mode dip to a lorentzian function and the dashed lines show the trend.

Fig. 5.
Fig. 5.

Time-resolved PL traces. Upper inset: Unfiltered PL spectra of the flat film and the resonator under free space and evanescent excitation. The bottle spectra have been multiplied by 3. Lower inset: Pump power dependence of time-resolved signal, at the peak (open circles) and the steady state (filled circles), showing saturation in both cases.

Fig. 6.
Fig. 6.

Atomic force microscope image of the surface of a coated resonator. The measured root-mean-squared roughness from the image is 3.40 nm.

Fig. 7.
Fig. 7.

(a) HRTEM image showing the presence of crystalline Si nanoparticles. (b) EFTEM image showing the Si-NCs (white) on the oxide background (grey).

Fig. 8.
Fig. 8.

Unnormalized size distribution measured from EFTEM images (black dots). The dotted line is a fit using a lognormal function.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

R ( z ) R 0 ( 1 1 2 ( Δ kz ) 2 ) ,
k mq 2 = m 2 R 0 2 + ( q + 1 2 ) Δ E m ,
Q f 1 = Q Rad 1 + Q Rough 1 + Q Mie 1 + Q IB 1 .
α Rough = φ 2 ( r ) ( n film 2 1 ) k 0 2 8 n film σ 2 π n eff 2 1 ,
Q Rough = 2 π n eff λ α Rough = 2.1 × 10 6 .
α IB = Γ ( λ ) R = R ( λ ) R = R max σ abs ( R ) ρ ( R ) d R ,
α Mie = Γ ( λ ) R = R min R = R max σ Mie ( R , λ ) ρ ( R ) d R ,
σ Mie = 8 π 3 ( 2 π n Si O 2 λ ) 4 R 6 ( n Si 2 n Si O 2 2 n Si 2 + 2 n Si O 2 2 ) 2 .
Q Ar + = ( Q f + Q CCA ) 1 = 9.7 × 10 5 .
ρ TEM ( R ) = 1 2 π e ln ( R / R 0 ) 2 2 σ 2
ρ ( R ) = A ρ TEM ( R ) .
N Si = A 0 ρ TEM ( R ) 4 π R 3 3 d R 1 8 a 3 .
N Si = ρ Si / A Si 1 + V Si O 2 V Si ,
f = N Si N Si + N Si O 2
V Si O 2 V Si = 1 f f A Si O 2 ρ Si A Si ρ Si O 2 ,

Metrics