Abstract

We report the capture of images via a wedge light-guide without the margin for fan-in needed heretofore. While this lets one look out of a slim panel as if it were a periscope, half the power is lost and resolution is degraded by aperture diffraction. Volume gratings may resolve these drawbacks at certain wavelengths and we consider how these might be extruded.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. L. Travis, F. P. Payne, J. J. Zhong, and J. R. Moore, “Flat panel display using projection within a wedge-shaped waveguide,” presented at the 20th International Display Research Conference, Society for Information Display, 292–295 (2000).
  2. Y. K. Cheng, S. N. Chung, and J. L. Chern, “Aberration analysis of a wedge-plate display system,” J. Opt. Soc. Am. A 24(8), 2357–2362 (2007).
    [CrossRef]
  3. A. R. L. Travis, T. Large, N. Emerton, and S. Bathiche, “Collimated light from a waveguide for a display backlight,” Opt. Express 17(22), 19714–19719 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=opex-17-22-19714 .
    [CrossRef] [PubMed]
  4. S. Boual, T. Large, M. Buckingham, A. R. L. Travis, and S. Munford, “Wedge displays as cameras”, in SID International Symposium,” Dig. Tech. Pap. 37, 1999–2002 (2006).
    [CrossRef]
  5. H. A. Macleod, Thin-Film Optical Filters, (Institute of Physics Publishing, 2002), Chap. 14.1.
  6. R. S. Chu and J. A. Kong, “Modal Theory of Spatially Periodic Media,” IEEE Trans. Microw. Theory Tech. MTT-25, 18–24 (1977).
  7. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
    [CrossRef] [PubMed]
  8. M. Mignanelli, K. Wani, J. Ballato, S. Foulger, and P. Brown, “Polymer microstructured fibers by one-step extrusion,” Opt. Express 15(10), 6183–6189 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=opex-15-10-6183 .
    [CrossRef] [PubMed]
  9. Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New Class of Bioinspired Lenses with a Gradient Refractive Index,” J. Appl. Polym. Sci. 103(3), 1834–1841 (2007).
    [CrossRef]

2009 (1)

2007 (3)

2006 (1)

S. Boual, T. Large, M. Buckingham, A. R. L. Travis, and S. Munford, “Wedge displays as cameras”, in SID International Symposium,” Dig. Tech. Pap. 37, 1999–2002 (2006).
[CrossRef]

2000 (1)

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

1977 (1)

R. S. Chu and J. A. Kong, “Modal Theory of Spatially Periodic Media,” IEEE Trans. Microw. Theory Tech. MTT-25, 18–24 (1977).

Baer, E.

Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New Class of Bioinspired Lenses with a Gradient Refractive Index,” J. Appl. Polym. Sci. 103(3), 1834–1841 (2007).
[CrossRef]

Ballato, J.

Bathiche, S.

Boual, S.

S. Boual, T. Large, M. Buckingham, A. R. L. Travis, and S. Munford, “Wedge displays as cameras”, in SID International Symposium,” Dig. Tech. Pap. 37, 1999–2002 (2006).
[CrossRef]

Brown, P.

Buckingham, M.

S. Boual, T. Large, M. Buckingham, A. R. L. Travis, and S. Munford, “Wedge displays as cameras”, in SID International Symposium,” Dig. Tech. Pap. 37, 1999–2002 (2006).
[CrossRef]

Cheng, Y. K.

Chern, J. L.

Chu, R. S.

R. S. Chu and J. A. Kong, “Modal Theory of Spatially Periodic Media,” IEEE Trans. Microw. Theory Tech. MTT-25, 18–24 (1977).

Chung, S. N.

Emerton, N.

Foulger, S.

Gilbert, L. R.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Hiltner, A.

Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New Class of Bioinspired Lenses with a Gradient Refractive Index,” J. Appl. Polym. Sci. 103(3), 1834–1841 (2007).
[CrossRef]

Jin, Y.

Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New Class of Bioinspired Lenses with a Gradient Refractive Index,” J. Appl. Polym. Sci. 103(3), 1834–1841 (2007).
[CrossRef]

Kong, J. A.

R. S. Chu and J. A. Kong, “Modal Theory of Spatially Periodic Media,” IEEE Trans. Microw. Theory Tech. MTT-25, 18–24 (1977).

Large, T.

A. R. L. Travis, T. Large, N. Emerton, and S. Bathiche, “Collimated light from a waveguide for a display backlight,” Opt. Express 17(22), 19714–19719 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=opex-17-22-19714 .
[CrossRef] [PubMed]

S. Boual, T. Large, M. Buckingham, A. R. L. Travis, and S. Munford, “Wedge displays as cameras”, in SID International Symposium,” Dig. Tech. Pap. 37, 1999–2002 (2006).
[CrossRef]

Mignanelli, M.

Munford, S.

S. Boual, T. Large, M. Buckingham, A. R. L. Travis, and S. Munford, “Wedge displays as cameras”, in SID International Symposium,” Dig. Tech. Pap. 37, 1999–2002 (2006).
[CrossRef]

Nevitt, T. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Ouderkirk, A. J.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Shirk, J. S.

Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New Class of Bioinspired Lenses with a Gradient Refractive Index,” J. Appl. Polym. Sci. 103(3), 1834–1841 (2007).
[CrossRef]

Stover, C. A.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Tai, H.

Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New Class of Bioinspired Lenses with a Gradient Refractive Index,” J. Appl. Polym. Sci. 103(3), 1834–1841 (2007).
[CrossRef]

Travis, A. R. L.

A. R. L. Travis, T. Large, N. Emerton, and S. Bathiche, “Collimated light from a waveguide for a display backlight,” Opt. Express 17(22), 19714–19719 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=opex-17-22-19714 .
[CrossRef] [PubMed]

S. Boual, T. Large, M. Buckingham, A. R. L. Travis, and S. Munford, “Wedge displays as cameras”, in SID International Symposium,” Dig. Tech. Pap. 37, 1999–2002 (2006).
[CrossRef]

Wani, K.

Weber, M. F.

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Dig. Tech. Pap. (1)

S. Boual, T. Large, M. Buckingham, A. R. L. Travis, and S. Munford, “Wedge displays as cameras”, in SID International Symposium,” Dig. Tech. Pap. 37, 1999–2002 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

R. S. Chu and J. A. Kong, “Modal Theory of Spatially Periodic Media,” IEEE Trans. Microw. Theory Tech. MTT-25, 18–24 (1977).

J. Appl. Polym. Sci. (1)

Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New Class of Bioinspired Lenses with a Gradient Refractive Index,” J. Appl. Polym. Sci. 103(3), 1834–1841 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Science (1)

M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287(5462), 2451–2456 (2000).
[CrossRef] [PubMed]

Other (2)

A. R. L. Travis, F. P. Payne, J. J. Zhong, and J. R. Moore, “Flat panel display using projection within a wedge-shaped waveguide,” presented at the 20th International Display Research Conference, Society for Information Display, 292–295 (2000).

H. A. Macleod, Thin-Film Optical Filters, (Institute of Physics Publishing, 2002), Chap. 14.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The slab lets rays fan out in the x-z plane. The slab also makes all rays undergo the same number of reflections before exit, so conversion of angle to distance is continuous

Fig. 2
Fig. 2

No margin is needed if rays can fan out within the wedge. We do this by pointing the camera or projector into the thin end.

Fig. 3
Fig. 3

The wedge thick end is curved so when traced backwards, rays form a focus whose position can be altered by facets.

Fig. 4
Fig. 4

Image captured by a camera pointed into the thin end of a wedge with a test card placed against one surface.

Fig. 5
Fig. 5

A second arrangement permits imaging where the angle of the facets is twice that in Fig. 3.

Fig. 7
Fig. 7

A multi-layer grating was modeled in which the layers were tilted at 15° and varied in refractive index in the manner of a rugate filter.

Fig. 6
Fig. 6

Target properties of the end reflector.

Fig. 8
Fig. 8

The properties predicted by finite element analysis of the multi-layer grating of Fig. 7 [values greater than 1are presumed due to software artifacts].

Metrics