Abstract

The major drawback of frequency modulation (FM)-based directly modulated laser (DML) is its non-uniform FM response at low frequency range which gives rise to a severe pattern-dependent performance degradation. In this paper, we investigate the use of line coding to deplete the low-frequency spectral contents of the signal and thus to alleviate the degradation. We examine various line codes (8B/10B, 5B/6B, 7B/8B, 9B/10B, and 64B/66B) with continuous-phase frequency-shift keying/ amplitude-shift keying (CPFSK/ASK) signals generated using a DML and a delay interferometer. Experimental demonstrations are performed with a long pseudorandom bit sequence length of 220-1 and the bandwidth expansion by each code is taken into consideration. The results show that among the five codes we tested, 9B/10B code outperforms the other codes in terms of receiver sensitivity an dispersion tolerance. We demonstrate successful transmission of 10-Gb/s CPFSK-ASK signals over 65-km standard single-mode fiber with a bandwidth expansion of only 11.1%.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Lin, S. L. Lee, and C. L. Yang, “Spectral filtering of multiple directly modulated channels for WDM access networks by using an FP etalon,” J. Opt. Netw. 8(3), 306–316 (2009).
    [CrossRef]
  2. H. S. Chung, Y. G. Jang, and Y. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
    [CrossRef]
  3. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
    [CrossRef]
  4. M. D. Feuer, S. L. Sun-Yuan Huang, O. Woodward, Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15(12), 1788–1790 (2003).
    [CrossRef]
  5. M. Du, L. G-. Nielsen, C. G. Jorgensen, and D. DiGiovanni, “Dispersion Compensated 10-Gb/s Directly Modulated Lasers for 6x80km, DWDM Metro Network Applications,” in Proceedings of ECOC2006, pp. 1–2.
  6. W. Idler, A. Klekamp, R. Dischler, and B. Wedding, “Advantages of frequency shift keying in 10 Gb/s systems,” in Proceedings of IEEE/LEOS Workshop on Advanced Modulation Formats, 2004, pp. 51–52.
  7. P. Baroni, V. Miot, A. Carena, and P. Poggiolini, “8B10B line coding to mitigate the non-uniform FM laser response of direct modulated CPFSK transmitter,” Opt. Express 16(10), 7279–7284 (2008).
    [CrossRef] [PubMed]
  8. E. Forestieri and G. Prati, “Analysis of delay-and-multiply optical FSK receivers with line-coding and non-flat laser FM response,” IEEE J. Sel. Areas Comm. 13(3), 543–556 (1995).
    [CrossRef]
  9. S. Saito, Y. Yamamoto, and T. Kimura, “S/N and error rate evaluation for an optical FSK-heterodyne detection system using semiconductor lasers,” IEEE J. Quantum Electron. 19(2), 180–193 (1983).
    [CrossRef]
  10. S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, and H. Ishikawa, “FM response of narrow-linewidth, multielectrode λ/4 shift DFB laser,” IEEE Photon. Technol. Lett. 2(3), 165–166 (1990).
    [CrossRef]
  11. X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmission code,” IBM J. Res. Develop. 27(5), 440–451 (1983).
    [CrossRef]
  12. F. Effenberger, F. Yu, Z. Wang, and J. Gao, “A 9b10b line code for 2.5Gb/s upstream PONs,” in Proceedings of Optical Fiber Communication, 2009, pp. 1–3.
  13. X. Widmer, “DC balanced 7B/8B, 9B/10B, and partitioned DC balanced 12B/14B, 17B/20B, and 16B/18B transmission codes,” U.S. Patent 6614369 B1, Sept. 2, 2003.
  14. R. Walker, and R. Dugan, “64B/66B low-overhead coding proposal for serial links,” IEEE 802.3ah (10 GE) Task Force, 2000.
  15. H. Kim, S. K. Kim, H. Lee, S. Hwang, and Y. Oh, “A novel way to improve the dispersion-limited transmission distance of electroabsorption modulated lasers,” IEEE Photon. Technol. Lett. 18(8), 947–949 (2006).
    [CrossRef]
  16. K. J. Park, S. K. Shin, and Y. C. Chung, “Simple monitoring technique for WDM networks,” Electron. Lett. 35(5), 415–417 (1999).
    [CrossRef]

2009 (1)

2008 (1)

2006 (1)

H. Kim, S. K. Kim, H. Lee, S. Hwang, and Y. Oh, “A novel way to improve the dispersion-limited transmission distance of electroabsorption modulated lasers,” IEEE Photon. Technol. Lett. 18(8), 947–949 (2006).
[CrossRef]

2003 (2)

H. S. Chung, Y. G. Jang, and Y. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

M. D. Feuer, S. L. Sun-Yuan Huang, O. Woodward, Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15(12), 1788–1790 (2003).
[CrossRef]

2001 (1)

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

1999 (1)

K. J. Park, S. K. Shin, and Y. C. Chung, “Simple monitoring technique for WDM networks,” Electron. Lett. 35(5), 415–417 (1999).
[CrossRef]

1995 (1)

E. Forestieri and G. Prati, “Analysis of delay-and-multiply optical FSK receivers with line-coding and non-flat laser FM response,” IEEE J. Sel. Areas Comm. 13(3), 543–556 (1995).
[CrossRef]

1990 (1)

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, and H. Ishikawa, “FM response of narrow-linewidth, multielectrode λ/4 shift DFB laser,” IEEE Photon. Technol. Lett. 2(3), 165–166 (1990).
[CrossRef]

1983 (2)

X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmission code,” IBM J. Res. Develop. 27(5), 440–451 (1983).
[CrossRef]

S. Saito, Y. Yamamoto, and T. Kimura, “S/N and error rate evaluation for an optical FSK-heterodyne detection system using semiconductor lasers,” IEEE J. Quantum Electron. 19(2), 180–193 (1983).
[CrossRef]

Baroni, P.

Boroditsky, M.

M. D. Feuer, S. L. Sun-Yuan Huang, O. Woodward, Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15(12), 1788–1790 (2003).
[CrossRef]

Boskovic, A.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Carena, A.

Chung, H. S.

H. S. Chung, Y. G. Jang, and Y. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

Chung, Y.

H. S. Chung, Y. G. Jang, and Y. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

Chung, Y. C.

K. J. Park, S. K. Shin, and Y. C. Chung, “Simple monitoring technique for WDM networks,” Electron. Lett. 35(5), 415–417 (1999).
[CrossRef]

Coskun,

M. D. Feuer, S. L. Sun-Yuan Huang, O. Woodward, Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15(12), 1788–1790 (2003).
[CrossRef]

Feuer, M. D.

M. D. Feuer, S. L. Sun-Yuan Huang, O. Woodward, Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15(12), 1788–1790 (2003).
[CrossRef]

Forestieri, E.

E. Forestieri and G. Prati, “Analysis of delay-and-multiply optical FSK receivers with line-coding and non-flat laser FM response,” IEEE J. Sel. Areas Comm. 13(3), 543–556 (1995).
[CrossRef]

Franaszek, P. A.

X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmission code,” IBM J. Res. Develop. 27(5), 440–451 (1983).
[CrossRef]

Hallock, B.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Hesse, R.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Hwang, S.

H. Kim, S. K. Kim, H. Lee, S. Hwang, and Y. Oh, “A novel way to improve the dispersion-limited transmission distance of electroabsorption modulated lasers,” IEEE Photon. Technol. Lett. 18(8), 947–949 (2006).
[CrossRef]

Ishikawa, H.

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, and H. Ishikawa, “FM response of narrow-linewidth, multielectrode λ/4 shift DFB laser,” IEEE Photon. Technol. Lett. 2(3), 165–166 (1990).
[CrossRef]

Jang, Y. G.

H. S. Chung, Y. G. Jang, and Y. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

Kim, H.

H. Kim, S. K. Kim, H. Lee, S. Hwang, and Y. Oh, “A novel way to improve the dispersion-limited transmission distance of electroabsorption modulated lasers,” IEEE Photon. Technol. Lett. 18(8), 947–949 (2006).
[CrossRef]

Kim, S. K.

H. Kim, S. K. Kim, H. Lee, S. Hwang, and Y. Oh, “A novel way to improve the dispersion-limited transmission distance of electroabsorption modulated lasers,” IEEE Photon. Technol. Lett. 18(8), 947–949 (2006).
[CrossRef]

Kimura, T.

S. Saito, Y. Yamamoto, and T. Kimura, “S/N and error rate evaluation for an optical FSK-heterodyne detection system using semiconductor lasers,” IEEE J. Quantum Electron. 19(2), 180–193 (1983).
[CrossRef]

Kotaki, Y.

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, and H. Ishikawa, “FM response of narrow-linewidth, multielectrode λ/4 shift DFB laser,” IEEE Photon. Technol. Lett. 2(3), 165–166 (1990).
[CrossRef]

Kuwahara, Y.

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, and H. Ishikawa, “FM response of narrow-linewidth, multielectrode λ/4 shift DFB laser,” IEEE Photon. Technol. Lett. 2(3), 165–166 (1990).
[CrossRef]

Lee, H.

H. Kim, S. K. Kim, H. Lee, S. Hwang, and Y. Oh, “A novel way to improve the dispersion-limited transmission distance of electroabsorption modulated lasers,” IEEE Photon. Technol. Lett. 18(8), 947–949 (2006).
[CrossRef]

Lee, S. L.

Lin, S. C.

Matsuda, M.

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, and H. Ishikawa, “FM response of narrow-linewidth, multielectrode λ/4 shift DFB laser,” IEEE Photon. Technol. Lett. 2(3), 165–166 (1990).
[CrossRef]

Miot, V.

Miyata, H.

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, and H. Ishikawa, “FM response of narrow-linewidth, multielectrode λ/4 shift DFB laser,” IEEE Photon. Technol. Lett. 2(3), 165–166 (1990).
[CrossRef]

Nakano, J.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Ogita, S.

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, and H. Ishikawa, “FM response of narrow-linewidth, multielectrode λ/4 shift DFB laser,” IEEE Photon. Technol. Lett. 2(3), 165–166 (1990).
[CrossRef]

Oh, Y.

H. Kim, S. K. Kim, H. Lee, S. Hwang, and Y. Oh, “A novel way to improve the dispersion-limited transmission distance of electroabsorption modulated lasers,” IEEE Photon. Technol. Lett. 18(8), 947–949 (2006).
[CrossRef]

Onaka, H.

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, and H. Ishikawa, “FM response of narrow-linewidth, multielectrode λ/4 shift DFB laser,” IEEE Photon. Technol. Lett. 2(3), 165–166 (1990).
[CrossRef]

Park, K. J.

K. J. Park, S. K. Shin, and Y. C. Chung, “Simple monitoring technique for WDM networks,” Electron. Lett. 35(5), 415–417 (1999).
[CrossRef]

Poggiolini, P.

Prati, G.

E. Forestieri and G. Prati, “Analysis of delay-and-multiply optical FSK receivers with line-coding and non-flat laser FM response,” IEEE J. Sel. Areas Comm. 13(3), 543–556 (1995).
[CrossRef]

Roudas, I.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Saito, S.

S. Saito, Y. Yamamoto, and T. Kimura, “S/N and error rate evaluation for an optical FSK-heterodyne detection system using semiconductor lasers,” IEEE J. Quantum Electron. 19(2), 180–193 (1983).
[CrossRef]

Shin, S. K.

K. J. Park, S. K. Shin, and Y. C. Chung, “Simple monitoring technique for WDM networks,” Electron. Lett. 35(5), 415–417 (1999).
[CrossRef]

Sun-Yuan Huang, S. L.

M. D. Feuer, S. L. Sun-Yuan Huang, O. Woodward, Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15(12), 1788–1790 (2003).
[CrossRef]

Tomkos, I.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Vodhanel, R.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Widmer, X.

X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmission code,” IBM J. Res. Develop. 27(5), 440–451 (1983).
[CrossRef]

Woodward, O.

M. D. Feuer, S. L. Sun-Yuan Huang, O. Woodward, Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15(12), 1788–1790 (2003).
[CrossRef]

Yamamoto, Y.

S. Saito, Y. Yamamoto, and T. Kimura, “S/N and error rate evaluation for an optical FSK-heterodyne detection system using semiconductor lasers,” IEEE J. Quantum Electron. 19(2), 180–193 (1983).
[CrossRef]

Yang, C. L.

Electron. Lett. (1)

K. J. Park, S. K. Shin, and Y. C. Chung, “Simple monitoring technique for WDM networks,” Electron. Lett. 35(5), 415–417 (1999).
[CrossRef]

IBM J. Res. Develop. (1)

X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmission code,” IBM J. Res. Develop. 27(5), 440–451 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Saito, Y. Yamamoto, and T. Kimura, “S/N and error rate evaluation for an optical FSK-heterodyne detection system using semiconductor lasers,” IEEE J. Quantum Electron. 19(2), 180–193 (1983).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

E. Forestieri and G. Prati, “Analysis of delay-and-multiply optical FSK receivers with line-coding and non-flat laser FM response,” IEEE J. Sel. Areas Comm. 13(3), 543–556 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

H. Kim, S. K. Kim, H. Lee, S. Hwang, and Y. Oh, “A novel way to improve the dispersion-limited transmission distance of electroabsorption modulated lasers,” IEEE Photon. Technol. Lett. 18(8), 947–949 (2006).
[CrossRef]

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, and H. Ishikawa, “FM response of narrow-linewidth, multielectrode λ/4 shift DFB laser,” IEEE Photon. Technol. Lett. 2(3), 165–166 (1990).
[CrossRef]

H. S. Chung, Y. G. Jang, and Y. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003).
[CrossRef]

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

M. D. Feuer, S. L. Sun-Yuan Huang, O. Woodward, Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15(12), 1788–1790 (2003).
[CrossRef]

J. Opt. Netw. (1)

Opt. Express (1)

Other (5)

M. Du, L. G-. Nielsen, C. G. Jorgensen, and D. DiGiovanni, “Dispersion Compensated 10-Gb/s Directly Modulated Lasers for 6x80km, DWDM Metro Network Applications,” in Proceedings of ECOC2006, pp. 1–2.

W. Idler, A. Klekamp, R. Dischler, and B. Wedding, “Advantages of frequency shift keying in 10 Gb/s systems,” in Proceedings of IEEE/LEOS Workshop on Advanced Modulation Formats, 2004, pp. 51–52.

F. Effenberger, F. Yu, Z. Wang, and J. Gao, “A 9b10b line code for 2.5Gb/s upstream PONs,” in Proceedings of Optical Fiber Communication, 2009, pp. 1–3.

X. Widmer, “DC balanced 7B/8B, 9B/10B, and partitioned DC balanced 12B/14B, 17B/20B, and 16B/18B transmission codes,” U.S. Patent 6614369 B1, Sept. 2, 2003.

R. Walker, and R. Dugan, “64B/66B low-overhead coding proposal for serial links,” IEEE 802.3ah (10 GE) Task Force, 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup and optical spectra measured at the output of (a) DML and (b) DI.

Fig. 8
Fig. 8

Schematic diagram of wavelength-division-multiplexed CPFSK-ASK directly modulated systems. WGR: wavelength grating router.

Fig. 2
Fig. 2

Receiver sensitivity as a function of the peak-to-peak driving voltage to the DML measured with a 9.953-Gb/s PRBS (length 27-1). The optimum driving voltage of 1.28 Vpp remains unchanged for different PRBS lengths and line codes running at their corresponding line rates.

Fig. 3
Fig. 3

Receiver sensitivity penalty vs. data rate measured with a 27-1 PRBS

Fig. 4
Fig. 4

Back-to-back BER curves for the line-coded data at their corresponding line rates.

Fig. 5
Fig. 5

Measured RF spectra of (a) 220-1 PRBS, (b) 64B/66B, (c) 9B/10B, (d) 7B/8B, (e) 5B/6B, (f) 8B/10B signals, and (g) all coded and uncoded signals at low-frequency range (<50 MHz).

Fig. 6
Fig. 6

Optical eye diagrams of (a) 27-1 PRBS, (b) 220-1 PRBS, (c) 64B/66B, (d) 9B/10B, (e) 7B/8B, (f) 5B/6B, and (g) 8B/10B signals measured at the DI output.

Fig. 7
Fig. 7

(a) Measured dispersion tolerance, (b) BER curves after 65-km transmission over SSMF.

Tables (1)

Tables Icon

Table 1 Line-Codes Used in the Experiment

Metrics