Abstract

We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on the liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065 nm by applying an electric field to the silicon assembly.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  2. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12(8), 1540–1550 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1540 .
    [CrossRef] [PubMed]
  3. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43(No. 11A), 7634–7638 (2004).
    [CrossRef]
  4. S. T. Wu, Q. T. Zhang, and S. Marder, “High dielectric dopants for low voltage liquid crystal operation,” Jpn. J. Appl. Phys. 37(Part 2, No. 10B), L1254–L1256 (1998).
    [CrossRef]
  5. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-13-698 .
    [CrossRef] [PubMed]
  6. C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
    [CrossRef]
  7. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference and Exhibit,2002. OFC 2002, pp. 466–468.
  8. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-20-2589 .
    [CrossRef] [PubMed]
  9. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
    [CrossRef]
  10. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7483 .
    [CrossRef] [PubMed]
  11. F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
    [CrossRef]
  12. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-24-5857 .
    [CrossRef] [PubMed]
  13. L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42(22), 1270–1271 (2006).
    [CrossRef]
  14. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-7901 .
    [CrossRef] [PubMed]
  15. M. N. Petersen, L. Scolari, T. Tokle, T. T. Alkeskjold, S. Gauza, S.-T. Wu, and A. Bjarklev, “Noise filtering in a multi-channel system using a tunable liquid crystal photonic bandgap fiber,” Opt. Express 16(24), 20067–20072 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-20067 .
    [CrossRef] [PubMed]
  16. T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
    [CrossRef]
  17. T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
    [CrossRef]
  18. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid crystal microstructured fibers,” J. Lightwave Technol. 24(9), 3427–3432 (2006).
    [CrossRef]
  19. L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, and A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34(18), 2757–2759 (2009).
    [CrossRef] [PubMed]
  20. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
    [CrossRef]
  21. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-447 .
    [CrossRef] [PubMed]
  22. L. Wei, E. Khomtchenko, T. T. Alkeskjold, and A. Bjarklev, “Photolithography of thick photoresist coating for electrically controlled liquid crystal photonic bandgap fiber devices,” Electron. Lett. 45(6), 326–327 (2009).
    [CrossRef]
  23. L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).
    [CrossRef]
  24. D. Noordegraaf, M. D. Nielsen, P. M. Skovgaard, S. Agger, K. P. Hansen, J. Broeng, C. Jakobsen, H. R. Simonsen, and J. Lægsgaard, “Pump Combiner for Air-Clad Fiber with PM Single-Mode Signal Feed-through,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThGG6.
  25. J. Weirich, J. Laegsgaard, L. Scolari, L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Biased liquid crystal infiltrated photonic bandgap fiber,” Opt. Express 17(6), 4442–4453 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4442 .
    [CrossRef] [PubMed]
  26. J. Weirich, J. Laegsgaard, L. Wei, T. T. Alkeskjold, T. X. Wu, S. Wu, and A. Bjarklev, “Liquid crystal parameter analysis for tunable photonic bandgap fiber devices,” Opt. Express 18(5), 4074–4087 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4074 .
    [CrossRef] [PubMed]

2010

2009

2008

2007

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-7901 .
[CrossRef] [PubMed]

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

2006

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42(22), 1270–1271 (2006).
[CrossRef]

D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid crystal microstructured fibers,” J. Lightwave Technol. 24(9), 3427–3432 (2006).
[CrossRef]

2005

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7483 .
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

2004

2003

2002

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

2001

1998

S. T. Wu, Q. T. Zhang, and S. Marder, “High dielectric dopants for low voltage liquid crystal operation,” Jpn. J. Appl. Phys. 37(Part 2, No. 10B), L1254–L1256 (1998).
[CrossRef]

Alkeskjold, T. T.

J. Weirich, J. Laegsgaard, L. Wei, T. T. Alkeskjold, T. X. Wu, S. Wu, and A. Bjarklev, “Liquid crystal parameter analysis for tunable photonic bandgap fiber devices,” Opt. Express 18(5), 4074–4087 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4074 .
[CrossRef] [PubMed]

L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, and A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34(18), 2757–2759 (2009).
[CrossRef] [PubMed]

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).
[CrossRef]

J. Weirich, J. Laegsgaard, L. Scolari, L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Biased liquid crystal infiltrated photonic bandgap fiber,” Opt. Express 17(6), 4442–4453 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4442 .
[CrossRef] [PubMed]

L. Wei, E. Khomtchenko, T. T. Alkeskjold, and A. Bjarklev, “Photolithography of thick photoresist coating for electrically controlled liquid crystal photonic bandgap fiber devices,” Electron. Lett. 45(6), 326–327 (2009).
[CrossRef]

M. N. Petersen, L. Scolari, T. Tokle, T. T. Alkeskjold, S. Gauza, S.-T. Wu, and A. Bjarklev, “Noise filtering in a multi-channel system using a tunable liquid crystal photonic bandgap fiber,” Opt. Express 16(24), 20067–20072 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-20067 .
[CrossRef] [PubMed]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-7901 .
[CrossRef] [PubMed]

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42(22), 1270–1271 (2006).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7483 .
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-24-5857 .
[CrossRef] [PubMed]

Anawati, A.

Bassi, P.

Bigot, L.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[CrossRef]

Bjarklev, A.

J. Weirich, J. Laegsgaard, L. Wei, T. T. Alkeskjold, T. X. Wu, S. Wu, and A. Bjarklev, “Liquid crystal parameter analysis for tunable photonic bandgap fiber devices,” Opt. Express 18(5), 4074–4087 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4074 .
[CrossRef] [PubMed]

L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, and A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34(18), 2757–2759 (2009).
[CrossRef] [PubMed]

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).
[CrossRef]

L. Wei, E. Khomtchenko, T. T. Alkeskjold, and A. Bjarklev, “Photolithography of thick photoresist coating for electrically controlled liquid crystal photonic bandgap fiber devices,” Electron. Lett. 45(6), 326–327 (2009).
[CrossRef]

J. Weirich, J. Laegsgaard, L. Scolari, L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Biased liquid crystal infiltrated photonic bandgap fiber,” Opt. Express 17(6), 4442–4453 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4442 .
[CrossRef] [PubMed]

M. N. Petersen, L. Scolari, T. Tokle, T. T. Alkeskjold, S. Gauza, S.-T. Wu, and A. Bjarklev, “Noise filtering in a multi-channel system using a tunable liquid crystal photonic bandgap fiber,” Opt. Express 16(24), 20067–20072 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-20067 .
[CrossRef] [PubMed]

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42(22), 1270–1271 (2006).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7483 .
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-24-5857 .
[CrossRef] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-20-2589 .
[CrossRef] [PubMed]

Bouwmans, G.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[CrossRef]

Broeng, J.

Chen, Y.

Czapla, A.

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

Dabrowski, R.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

de Sterke, C. M.

Dolinski, M.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

Domanski, A. W.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Douay, M.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[CrossRef]

Du, F.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

Dunn, S. C.

Eggleton, B. J.

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Ertman, S.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Gauza, S.

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Hale, A.

Hermann, D.

Hermann, D. S.

Hsu, C. S.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43(No. 11A), 7634–7638 (2004).
[CrossRef]

Janarthanan, N.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43(No. 11A), 7634–7638 (2004).
[CrossRef]

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[CrossRef]

Kerbage, C.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-13-698 .
[CrossRef] [PubMed]

Khomtchenko, E.

L. Wei, E. Khomtchenko, T. T. Alkeskjold, and A. Bjarklev, “Photolithography of thick photoresist coating for electrically controlled liquid crystal photonic bandgap fiber devices,” Electron. Lett. 45(6), 326–327 (2009).
[CrossRef]

Kriezis, E. E.

Laegsgaard, J.

Lægsgaard, J.

Larsen, T. T.

Lesiak, P.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

Li, J.

Litchinitser, N. M.

Lu, Y. Q.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

Lyngsø, J. K.

Mach, P.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

Marder, S.

S. T. Wu, Q. T. Zhang, and S. Marder, “High dielectric dopants for low voltage liquid crystal operation,” Jpn. J. Appl. Phys. 37(Part 2, No. 10B), L1254–L1256 (1998).
[CrossRef]

Maruyama, H.

McPhedran, R. C.

Nielsen, M.

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Noordegraaf, D.

Nowecka, K.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

Nowinowski-Kruszelnicki, E.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Olausson, C. B.

Petersen, M. N.

Pureur, V.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[CrossRef]

Quiquempois, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[CrossRef]

Riishede, J.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7483 .
[CrossRef] [PubMed]

Rindorf, L.

Rogers, J. A.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

Russell, P. St. J.

P. St. J. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Scolari, L.

J. Weirich, J. Laegsgaard, L. Scolari, L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Biased liquid crystal infiltrated photonic bandgap fiber,” Opt. Express 17(6), 4442–4453 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4442 .
[CrossRef] [PubMed]

M. N. Petersen, L. Scolari, T. Tokle, T. T. Alkeskjold, S. Gauza, S.-T. Wu, and A. Bjarklev, “Noise filtering in a multi-channel system using a tunable liquid crystal photonic bandgap fiber,” Opt. Express 16(24), 20067–20072 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-20067 .
[CrossRef] [PubMed]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-7901 .
[CrossRef] [PubMed]

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42(22), 1270–1271 (2006).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7483 .
[CrossRef] [PubMed]

Shirakawa, A.

Steinvurzel, P. E.

Tefelska, M.

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Tokle, T.

Tsiboukis, T. D.

Ueda, K.

Wei, L.

Weirich, J.

Wen, C. H.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43(No. 11A), 7634–7638 (2004).
[CrossRef]

Westbrook, P. S.

White, T. P.

Windeler, R. S.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-13-698 .
[CrossRef] [PubMed]

Wojcik, J.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

Wolinski, T. R.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Wu, S.

Wu, S. T.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43(No. 11A), 7634–7638 (2004).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-24-5857 .
[CrossRef] [PubMed]

S. T. Wu, Q. T. Zhang, and S. Marder, “High dielectric dopants for low voltage liquid crystal operation,” Jpn. J. Appl. Phys. 37(Part 2, No. 10B), L1254–L1256 (1998).
[CrossRef]

Wu, S.-T.

Wu, T. X.

Xue, W.

Zhang, Q. T.

S. T. Wu, Q. T. Zhang, and S. Marder, “High dielectric dopants for low voltage liquid crystal operation,” Jpn. J. Appl. Phys. 37(Part 2, No. 10B), L1254–L1256 (1998).
[CrossRef]

Zografopoulos, D. C.

Appl. Phys. Lett.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008).
[CrossRef]

Electron. Lett.

L. Wei, E. Khomtchenko, T. T. Alkeskjold, and A. Bjarklev, “Photolithography of thick photoresist coating for electrically controlled liquid crystal photonic bandgap fiber devices,” Electron. Lett. 45(6), 326–327 (2009).
[CrossRef]

L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42(22), 1270–1271 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43(No. 11A), 7634–7638 (2004).
[CrossRef]

S. T. Wu, Q. T. Zhang, and S. Marder, “High dielectric dopants for low voltage liquid crystal operation,” Jpn. J. Appl. Phys. 37(Part 2, No. 10B), L1254–L1256 (1998).
[CrossRef]

Meas. Sci. Technol.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

Opt. Commun.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002).
[CrossRef]

Opt. Express

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-13-698 .
[CrossRef] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-20-2589 .
[CrossRef] [PubMed]

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12(8), 1540–1550 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1540 .
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-24-5857 .
[CrossRef] [PubMed]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7483 .
[CrossRef] [PubMed]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-7901 .
[CrossRef] [PubMed]

M. N. Petersen, L. Scolari, T. Tokle, T. T. Alkeskjold, S. Gauza, S.-T. Wu, and A. Bjarklev, “Noise filtering in a multi-channel system using a tunable liquid crystal photonic bandgap fiber,” Opt. Express 16(24), 20067–20072 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-20067 .
[CrossRef] [PubMed]

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-447 .
[CrossRef] [PubMed]

J. Weirich, J. Laegsgaard, L. Scolari, L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Biased liquid crystal infiltrated photonic bandgap fiber,” Opt. Express 17(6), 4442–4453 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4442 .
[CrossRef] [PubMed]

J. Weirich, J. Laegsgaard, L. Wei, T. T. Alkeskjold, T. X. Wu, S. Wu, and A. Bjarklev, “Liquid crystal parameter analysis for tunable photonic bandgap fiber devices,” Opt. Express 18(5), 4074–4087 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4074 .
[CrossRef] [PubMed]

Opt. Lett.

Opt. Quantum Electron.

T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007).
[CrossRef]

Science

P. St. J. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other

D. Noordegraaf, M. D. Nielsen, P. M. Skovgaard, S. Agger, K. P. Hansen, J. Broeng, C. Jakobsen, H. R. Simonsen, and J. Lægsgaard, “Pump Combiner for Air-Clad Fiber with PM Single-Mode Signal Feed-through,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThGG6.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference and Exhibit,2002. OFC 2002, pp. 466–468.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Illustration of an enlarged capillary filled with LC. The blue arrows show the orientation of the LC director, while the black arrows show the direction along which the LC tends to reorient when a 1 kHz field is applied. (b) SEM image of the LMA 13 fiber placed in the silicon assembly.

Fig. 2
Fig. 2

Transmission spectrum of the LCPBG device as a function of applied voltage. The frequency of the applied electric field is 1 kHz.

Fig. 3
Fig. 3

Illustration of the silicon assembly for the LCPBG device.

Fig. 4
Fig. 4

All-spliced laser cavity setup from the left: cavity mirror, LCPBG fiber mounted on a silicon assembly, pump/signal combiner with single-mode signal feed-through, ytterbium-doped PCF, long wave pass filter, and OSA.

Fig. 5
Fig. 5

Transmission spectrum of the all-spliced fiber assembly. The short wavelength bandgap edge is shifted towards longer wavelengths when a voltage is applied. Above 160 Vrms the losses in the bandgap become high.

Fig. 6
Fig. 6

Near field image of the single-mode output from the laser cavity.

Fig. 7
Fig. 7

Laser transmission spectra compared to bandgap transmission spectra for two different voltage settings, (a) 0 Vrms, (b) 150 Vrms, and (c) 160 Vrms. The plots show how the cavity is lasing close to the short wavelength bandgap edge. Parasitic lasing outside the bandgap will limit the power and tunability of the laser at high voltages.

Fig. 8
Fig. 8

The laser wavelength is shifted towards longer wavelengths. At 160 Vrms parasitic lasing sets in at shorter wavelengths. A total shift of 25 nm is observed.

Fig. 9
Fig. 9

The laser wavelength plotted as a function of applied voltage. Tuning starts above 130 Vrms. The wavelength is constant at 1040 nm below 130 Vrms.

Fig. 10
Fig. 10

Simulated change of effective index of the capillary mode responsible for the short wavelength bandgap edge. The dependence of the effective index shift on the applied external field is found to be quadratic.

Metrics