Abstract

Integrated Optical Frequency-Resolved Mach-Zehnder Interferometry (IO FR-MZI) is introduced as an alternative, cost-efficient operation principle for integrated optical label-free affinity sensors that can combine high sensitivity with high versatility in terms of potential applications and experimental configurations. A detailed theoretical analysis of the method is presented followed by a semi-analytical approximation and numerical calculations in order to quantify the sensitivity and limits of detection of the FR-MZI over Single Wavelength MZI. The obtained results substantiate that IO FR-MZI- based sensors constitute a generic technological platform of high sensitivity that can be implemented into a plethora of detection schemes. For an optimized optical design well below 1mm in length the limit of detection can be as low as 0.025Å in terms of adlayer effective thickness allowing for truly miniaturized integrated optical sensors fabricated with high yield with standard microfabrication techniques.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Star, E. Tu, J. Niemann, J. C. Gabriel, C. S. Joiner, and C. Valcke, “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors,” Proc. Natl. Acad. Sci. U.S.A. 103(4), 921–926 (2006).
    [CrossRef] [PubMed]
  2. W. U. Wang, C. Chen, K. H. Lin, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208–3212 (2005).
    [CrossRef] [PubMed]
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  4. J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective Interferometric Detection of Label-Free Oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004).
    [CrossRef] [PubMed]
  5. G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005).
    [CrossRef] [PubMed]
  6. T. T. Goodrich, H. J. Lee, and R. M. Corn, “Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays,” J. Am. Chem. Soc. 126(13), 4086–4087 (2004).
    [CrossRef] [PubMed]
  7. J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
    [CrossRef] [PubMed]
  8. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [CrossRef] [PubMed]
  9. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30(24), 3344–3346 (2005).
    [CrossRef]
  10. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
    [CrossRef] [PubMed]
  11. M. Wiki and R. E. Kunz, “Wavelength-interrogated optical sensor for biochemical applications,” Opt. Lett. 25(7), 463–465 (2000).
    [CrossRef]
  12. E. Chow, A. Grot, L. W. M. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
    [CrossRef] [PubMed]
  13. P. Domachuck, H. Nguyen, H. C. Eggleton, B. J. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
    [CrossRef]
  14. M. I. Alayo, M. N. P. Carreρo, D. Criado, and I. Pereyra, “Optical and structural characterization of PECVD-silicon oxynitride films for waveguide device applications,” Proc. SPIE 5730, 250 (2005).
    [CrossRef]
  15. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
    [CrossRef]
  16. N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
    [CrossRef]
  17. B. Maisenhölder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, and J. Edlinger, “Monolithically integrated optical interferometry for refractometry,” Electron. Lett. 33(11), 986 (1997).
    [CrossRef]
  18. K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004).
    [CrossRef] [PubMed]
  19. W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sen. Act. B 29(1-3), 37–50 (1995).
    [CrossRef]
  20. K. Zinoviev, L. G. Carrascosa, J. S. del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon Photonic Biochips for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
  21. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express 16(12), 8359–8365 (2008).
    [CrossRef] [PubMed]
  22. Y.-D. Wu, T.-T. Shih, and M. H. Chen, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer,” Opt. Express 16(1), 248–257 (2008).
    [CrossRef] [PubMed]
  23. F. Prieto, B. Sep lveda, A. Calle, A. Llobera, C. Dom nguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
    [CrossRef]
  24. F. Prieto, B. Sepϊlveda, A. Calle, A. Llobera, C. Domνnguez, and L. M. Lechuga, “Integrated mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Act. B 92(1-2), 151–158 (2003).
    [CrossRef]
  25. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Act. B 61(1-3), 100–127 (1999).
    [CrossRef]
  26. B. Y. Shew, C. H. Kuo, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005).
    [CrossRef]
  27. B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens Act B 38–39, 277–282 (1997).
    [CrossRef]
  28. F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?” J. Light. Technol. 25(9), 2579–2589 (2007).
    [CrossRef]
  29. W. Lukosz and K. Tiefenthaler, “Sensitivity of integrated optical grating and prism couplers as (bio)-chemical sensors,” Sens. Act 15(3), 273–284 (1988).
    [CrossRef]
  30. W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity and immunosensing,” Biosens. Bioelectron. 6(3), 215–225 (1991).
    [CrossRef]
  31. P. D. T. Huibers, “Models for the wavelength dependence of the index of refraction of water,” Appl. Opt. 36(16), 3785–3787 (1997).
    [CrossRef] [PubMed]
  32. Handbook of Chemistry and Physics, R. D. Weast, ed. (CRC Presse, Fla, 1978–79).
  33. J. Voros, “The Density and Refractive Index of Adsorbing Protein Layers,” Biophys. J. 87(1), 553–561 (2004).
    [CrossRef] [PubMed]
  34. H. Zappe, Introduction to Semiconductor Integrated Optics (Artech House), Chap. 7.

2008 (4)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

K. Zinoviev, L. G. Carrascosa, J. S. del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon Photonic Biochips for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).

J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express 16(12), 8359–8365 (2008).
[CrossRef] [PubMed]

Y.-D. Wu, T.-T. Shih, and M. H. Chen, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer,” Opt. Express 16(1), 248–257 (2008).
[CrossRef] [PubMed]

2007 (4)

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?” J. Light. Technol. 25(9), 2579–2589 (2007).
[CrossRef]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef]

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
[CrossRef]

2006 (1)

A. Star, E. Tu, J. Niemann, J. C. Gabriel, C. S. Joiner, and C. Valcke, “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors,” Proc. Natl. Acad. Sci. U.S.A. 103(4), 921–926 (2006).
[CrossRef] [PubMed]

2005 (6)

W. U. Wang, C. Chen, K. H. Lin, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208–3212 (2005).
[CrossRef] [PubMed]

A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30(24), 3344–3346 (2005).
[CrossRef]

J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
[CrossRef] [PubMed]

M. I. Alayo, M. N. P. Carreρo, D. Criado, and I. Pereyra, “Optical and structural characterization of PECVD-silicon oxynitride films for waveguide device applications,” Proc. SPIE 5730, 250 (2005).
[CrossRef]

G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005).
[CrossRef] [PubMed]

B. Y. Shew, C. H. Kuo, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005).
[CrossRef]

2004 (6)

K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004).
[CrossRef] [PubMed]

J. Voros, “The Density and Refractive Index of Adsorbing Protein Layers,” Biophys. J. 87(1), 553–561 (2004).
[CrossRef] [PubMed]

T. T. Goodrich, H. J. Lee, and R. M. Corn, “Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays,” J. Am. Chem. Soc. 126(13), 4086–4087 (2004).
[CrossRef] [PubMed]

E. Chow, A. Grot, L. W. M. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
[CrossRef] [PubMed]

P. Domachuck, H. Nguyen, H. C. Eggleton, B. J. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
[CrossRef]

J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective Interferometric Detection of Label-Free Oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004).
[CrossRef] [PubMed]

2003 (2)

F. Prieto, B. Sep lveda, A. Calle, A. Llobera, C. Dom nguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

F. Prieto, B. Sepϊlveda, A. Calle, A. Llobera, C. Domνnguez, and L. M. Lechuga, “Integrated mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Act. B 92(1-2), 151–158 (2003).
[CrossRef]

2002 (1)

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Act. B 61(1-3), 100–127 (1999).
[CrossRef]

1997 (3)

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens Act B 38–39, 277–282 (1997).
[CrossRef]

P. D. T. Huibers, “Models for the wavelength dependence of the index of refraction of water,” Appl. Opt. 36(16), 3785–3787 (1997).
[CrossRef] [PubMed]

B. Maisenhölder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, and J. Edlinger, “Monolithically integrated optical interferometry for refractometry,” Electron. Lett. 33(11), 986 (1997).
[CrossRef]

1995 (1)

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sen. Act. B 29(1-3), 37–50 (1995).
[CrossRef]

1991 (1)

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity and immunosensing,” Biosens. Bioelectron. 6(3), 215–225 (1991).
[CrossRef]

1988 (1)

W. Lukosz and K. Tiefenthaler, “Sensitivity of integrated optical grating and prism couplers as (bio)-chemical sensors,” Sens. Act 15(3), 273–284 (1988).
[CrossRef]

Abad, A.

F. Prieto, B. Sep lveda, A. Calle, A. Llobera, C. Dom nguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Alayo, M. I.

M. I. Alayo, M. N. P. Carreρo, D. Criado, and I. Pereyra, “Optical and structural characterization of PECVD-silicon oxynitride films for waveguide device applications,” Proc. SPIE 5730, 250 (2005).
[CrossRef]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Borreman, A.

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?” J. Light. Technol. 25(9), 2579–2589 (2007).
[CrossRef]

Brandenburg, A.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef]

Brecht, A.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens Act B 38–39, 277–282 (1997).
[CrossRef]

Calle, A.

F. Prieto, B. Sepϊlveda, A. Calle, A. Llobera, C. Domνnguez, and L. M. Lechuga, “Integrated mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Act. B 92(1-2), 151–158 (2003).
[CrossRef]

F. Prieto, B. Sep lveda, A. Calle, A. Llobera, C. Dom nguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Carrascosa, L. G.

K. Zinoviev, L. G. Carrascosa, J. S. del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon Photonic Biochips for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).

Carre?o, M. N. P.

M. I. Alayo, M. N. P. Carreρo, D. Criado, and I. Pereyra, “Optical and structural characterization of PECVD-silicon oxynitride films for waveguide device applications,” Proc. SPIE 5730, 250 (2005).
[CrossRef]

Chen, C.

W. U. Wang, C. Chen, K. H. Lin, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208–3212 (2005).
[CrossRef] [PubMed]

Chen, M. H.

Chiavarini, S.

G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005).
[CrossRef] [PubMed]

Chow, E.

Corn, R. M.

T. T. Goodrich, H. J. Lee, and R. M. Corn, “Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays,” J. Am. Chem. Soc. 126(13), 4086–4087 (2004).
[CrossRef] [PubMed]

Criado, D.

M. I. Alayo, M. N. P. Carreρo, D. Criado, and I. Pereyra, “Optical and structural characterization of PECVD-silicon oxynitride films for waveguide device applications,” Proc. SPIE 5730, 250 (2005).
[CrossRef]

Csúcs, G.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

De Paul, S. M.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

del Rio, J. S.

K. Zinoviev, L. G. Carrascosa, J. S. del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon Photonic Biochips for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).

Dom nguez, C.

F. Prieto, B. Sep lveda, A. Calle, A. Llobera, C. Dom nguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Dom?nguez, C.

F. Prieto, B. Sepϊlveda, A. Calle, A. Llobera, C. Domνnguez, and L. M. Lechuga, “Integrated mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Act. B 92(1-2), 151–158 (2003).
[CrossRef]

Domachuck, P.

P. Domachuck, H. Nguyen, H. C. Eggleton, B. J. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
[CrossRef]

Dominguez, C.

K. Zinoviev, L. G. Carrascosa, J. S. del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon Photonic Biochips for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).

Drapp, B.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens Act B 38–39, 277–282 (1997).
[CrossRef]

Edlinger, J.

B. Maisenhölder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, and J. Edlinger, “Monolithically integrated optical interferometry for refractometry,” Electron. Lett. 33(11), 986 (1997).
[CrossRef]

Eggleton, H. C.

P. Domachuck, H. Nguyen, H. C. Eggleton, B. J. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Fang, Q.

Fang, Y.

W. U. Wang, C. Chen, K. H. Lin, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208–3212 (2005).
[CrossRef] [PubMed]

Ferrara, V. L.

G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005).
[CrossRef] [PubMed]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Francia, G. D.

G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Gabriel, J. C.

A. Star, E. Tu, J. Niemann, J. C. Gabriel, C. S. Joiner, and C. Valcke, “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors,” Proc. Natl. Acad. Sci. U.S.A. 103(4), 921–926 (2006).
[CrossRef] [PubMed]

Gauglitz, G.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens Act B 38–39, 277–282 (1997).
[CrossRef]

Geuzebroek, D. H.

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?” J. Light. Technol. 25(9), 2579–2589 (2007).
[CrossRef]

Girolami, G.

Goodrich, T. T.

T. T. Goodrich, H. J. Lee, and R. M. Corn, “Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays,” J. Am. Chem. Soc. 126(13), 4086–4087 (2004).
[CrossRef] [PubMed]

Grot, A.

Gu, M.

P. Domachuck, H. Nguyen, H. C. Eggleton, B. J. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
[CrossRef]

Heideman, R. G.

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?” J. Light. Technol. 25(9), 2579–2589 (2007).
[CrossRef]

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Act. B 61(1-3), 100–127 (1999).
[CrossRef]

Hoffmann, C.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef]

Horvath, R.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
[CrossRef]

Huang, Y. C.

B. Y. Shew, C. H. Kuo, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005).
[CrossRef]

Huibers, P. D. T.

Ingenhoff, J.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens Act B 38–39, 277–282 (1997).
[CrossRef]

Joiner, C. S.

A. Star, E. Tu, J. Niemann, J. C. Gabriel, C. S. Joiner, and C. Valcke, “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors,” Proc. Natl. Acad. Sci. U.S.A. 103(4), 921–926 (2006).
[CrossRef] [PubMed]

Kakabakos, S. E.

K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004).
[CrossRef] [PubMed]

Ksendzov, A.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Kunz, R. E.

M. Wiki and R. E. Kunz, “Wavelength-interrogated optical sensor for biochemical applications,” Opt. Lett. 25(7), 463–465 (2000).
[CrossRef]

B. Maisenhölder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, and J. Edlinger, “Monolithically integrated optical interferometry for refractometry,” Electron. Lett. 33(11), 986 (1997).
[CrossRef]

Kuo, C. H.

B. Y. Shew, C. H. Kuo, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005).
[CrossRef]

Kwong, D. L.

Lambeck, P. V.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Act. B 61(1-3), 100–127 (1999).
[CrossRef]

Larsen, N. B.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
[CrossRef]

Lechuga, L. M.

K. Zinoviev, L. G. Carrascosa, J. S. del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon Photonic Biochips for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).

F. Prieto, B. Sep lveda, A. Calle, A. Llobera, C. Dom nguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

F. Prieto, B. Sepϊlveda, A. Calle, A. Llobera, C. Domνnguez, and L. M. Lechuga, “Integrated mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Act. B 92(1-2), 151–158 (2003).
[CrossRef]

Lee, H. J.

T. T. Goodrich, H. J. Lee, and R. M. Corn, “Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays,” J. Am. Chem. Soc. 126(13), 4086–4087 (2004).
[CrossRef] [PubMed]

Leinse, A.

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?” J. Light. Technol. 25(9), 2579–2589 (2007).
[CrossRef]

Lieber, C. M.

W. U. Wang, C. Chen, K. H. Lin, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208–3212 (2005).
[CrossRef] [PubMed]

Lin, K. H.

W. U. Wang, C. Chen, K. H. Lin, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208–3212 (2005).
[CrossRef] [PubMed]

Lin, Y.

Llobera, A.

F. Prieto, B. Sepϊlveda, A. Calle, A. Llobera, C. Domνnguez, and L. M. Lechuga, “Integrated mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Act. B 92(1-2), 151–158 (2003).
[CrossRef]

F. Prieto, B. Sep lveda, A. Calle, A. Llobera, C. Dom nguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Lo, G. Q.

Lou, J.

Lu, J.

J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective Interferometric Detection of Label-Free Oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004).
[CrossRef] [PubMed]

Luff, B. J.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens Act B 38–39, 277–282 (1997).
[CrossRef]

Lukosz, W.

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sen. Act. B 29(1-3), 37–50 (1995).
[CrossRef]

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity and immunosensing,” Biosens. Bioelectron. 6(3), 215–225 (1991).
[CrossRef]

W. Lukosz and K. Tiefenthaler, “Sensitivity of integrated optical grating and prism couplers as (bio)-chemical sensors,” Sens. Act 15(3), 273–284 (1988).
[CrossRef]

Maisenhölder, B.

B. Maisenhölder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, and J. Edlinger, “Monolithically integrated optical interferometry for refractometry,” Electron. Lett. 33(11), 986 (1997).
[CrossRef]

Manzo, S.

G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005).
[CrossRef] [PubMed]

Martinelli, M.

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?” J. Light. Technol. 25(9), 2579–2589 (2007).
[CrossRef]

Melloni, A.

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?” J. Light. Technol. 25(9), 2579–2589 (2007).
[CrossRef]

Meyrueis, P.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef]

Miller, B. L.

J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective Interferometric Detection of Label-Free Oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004).
[CrossRef] [PubMed]

Mirkarimi, L. W. M.

Misiakos, K.

K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004).
[CrossRef] [PubMed]

Montoya, A.

F. Prieto, B. Sep lveda, A. Calle, A. Llobera, C. Dom nguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Morichetti, F.

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?” J. Light. Technol. 25(9), 2579–2589 (2007).
[CrossRef]

Moser, M.

B. Maisenhölder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, and J. Edlinger, “Monolithically integrated optical interferometry for refractometry,” Electron. Lett. 33(11), 986 (1997).
[CrossRef]

Nguyen, H.

P. Domachuck, H. Nguyen, H. C. Eggleton, B. J. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
[CrossRef]

Niemann, J.

A. Star, E. Tu, J. Niemann, J. C. Gabriel, C. S. Joiner, and C. Valcke, “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors,” Proc. Natl. Acad. Sci. U.S.A. 103(4), 921–926 (2006).
[CrossRef] [PubMed]

Pedersen, H. C.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
[CrossRef]

Pereyra, I.

M. I. Alayo, M. N. P. Carreρo, D. Criado, and I. Pereyra, “Optical and structural characterization of PECVD-silicon oxynitride films for waveguide device applications,” Proc. SPIE 5730, 250 (2005).
[CrossRef]

Petrou, P. S.

K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004).
[CrossRef] [PubMed]

Piehler, J.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens Act B 38–39, 277–282 (1997).
[CrossRef]

Prieto, F.

F. Prieto, B. Sepϊlveda, A. Calle, A. Llobera, C. Domνnguez, and L. M. Lechuga, “Integrated mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Act. B 92(1-2), 151–158 (2003).
[CrossRef]

F. Prieto, B. Sep lveda, A. Calle, A. Llobera, C. Dom nguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Ramsden, J. J.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Riel, P.

B. Maisenhölder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, and J. Edlinger, “Monolithically integrated optical interferometry for refractometry,” Electron. Lett. 33(11), 986 (1997).
[CrossRef]

Rothberg, L. J.

J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective Interferometric Detection of Label-Free Oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004).
[CrossRef] [PubMed]

Ruf, H. H.

K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004).
[CrossRef] [PubMed]

Schirmer, B.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef]

Schmitt, K.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef]

Sep lveda, B.

F. Prieto, B. Sep lveda, A. Calle, A. Llobera, C. Dom nguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Sep?lveda, B.

F. Prieto, B. Sepϊlveda, A. Calle, A. Llobera, C. Domνnguez, and L. M. Lechuga, “Integrated mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Act. B 92(1-2), 151–158 (2003).
[CrossRef]

Sepulveda, B.

K. Zinoviev, L. G. Carrascosa, J. S. del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon Photonic Biochips for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).

Shew, B. Y.

B. Y. Shew, C. H. Kuo, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005).
[CrossRef]

Shih, T.-T.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Sigalas, M.

Skivesen, N.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
[CrossRef]

Song, J.

Spencer, N. D.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Star, A.

A. Star, E. Tu, J. Niemann, J. C. Gabriel, C. S. Joiner, and C. Valcke, “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors,” Proc. Natl. Acad. Sci. U.S.A. 103(4), 921–926 (2006).
[CrossRef] [PubMed]

Straub, B. J.

P. Domachuck, H. Nguyen, H. C. Eggleton, B. J. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
[CrossRef]

Strohsahl, C. M.

J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective Interferometric Detection of Label-Free Oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004).
[CrossRef] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Szendro, I.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Tao, S. H.

Textor, M.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Thinggaard, S.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
[CrossRef]

Tiefenthaler, K.

W. Lukosz and K. Tiefenthaler, “Sensitivity of integrated optical grating and prism couplers as (bio)-chemical sensors,” Sens. Act 15(3), 273–284 (1988).
[CrossRef]

Tong, L.

Tsai, Y. H.

B. Y. Shew, C. H. Kuo, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005).
[CrossRef]

Tu, E.

A. Star, E. Tu, J. Niemann, J. C. Gabriel, C. S. Joiner, and C. Valcke, “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors,” Proc. Natl. Acad. Sci. U.S.A. 103(4), 921–926 (2006).
[CrossRef] [PubMed]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Valcke, C.

A. Star, E. Tu, J. Niemann, J. C. Gabriel, C. S. Joiner, and C. Valcke, “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors,” Proc. Natl. Acad. Sci. U.S.A. 103(4), 921–926 (2006).
[CrossRef] [PubMed]

Voros, J.

J. Voros, “The Density and Refractive Index of Adsorbing Protein Layers,” Biophys. J. 87(1), 553–561 (2004).
[CrossRef] [PubMed]

Vörös, J.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Wang, W. U.

W. U. Wang, C. Chen, K. H. Lin, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208–3212 (2005).
[CrossRef] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Wiki, M.

Wilkinson, J. S.

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens Act B 38–39, 277–282 (1997).
[CrossRef]

Wu, Y.-D.

Ye, Z.

Yu, M. B.

Zappe, H. P.

B. Maisenhölder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, and J. Edlinger, “Monolithically integrated optical interferometry for refractometry,” Electron. Lett. 33(11), 986 (1997).
[CrossRef]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Zinoviev, K.

K. Zinoviev, L. G. Carrascosa, J. S. del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon Photonic Biochips for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).

Adv. Opt. Technol. (1)

K. Zinoviev, L. G. Carrascosa, J. S. del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon Photonic Biochips for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).

Anal. Chem. (2)

J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective Interferometric Detection of Label-Free Oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004).
[CrossRef] [PubMed]

K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Domachuck, H. Nguyen, H. C. Eggleton, B. J. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004).
[CrossRef]

Biomaterials (1)

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Biophys. J. (1)

J. Voros, “The Density and Refractive Index of Adsorbing Protein Layers,” Biophys. J. 87(1), 553–561 (2004).
[CrossRef] [PubMed]

Biosens. Bioelectron. (4)

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity and immunosensing,” Biosens. Bioelectron. 6(3), 215–225 (1991).
[CrossRef]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef]

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007).
[CrossRef]

G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005).
[CrossRef] [PubMed]

Electron. Lett. (1)

B. Maisenhölder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, and J. Edlinger, “Monolithically integrated optical interferometry for refractometry,” Electron. Lett. 33(11), 986 (1997).
[CrossRef]

J. Am. Chem. Soc. (1)

T. T. Goodrich, H. J. Lee, and R. M. Corn, “Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays,” J. Am. Chem. Soc. 126(13), 4086–4087 (2004).
[CrossRef] [PubMed]

J. Light. Technol. (1)

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?” J. Light. Technol. 25(9), 2579–2589 (2007).
[CrossRef]

Nanotechnology (1)

F. Prieto, B. Sep lveda, A. Calle, A. Llobera, C. Dom nguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U.S.A. (2)

A. Star, E. Tu, J. Niemann, J. C. Gabriel, C. S. Joiner, and C. Valcke, “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors,” Proc. Natl. Acad. Sci. U.S.A. 103(4), 921–926 (2006).
[CrossRef] [PubMed]

W. U. Wang, C. Chen, K. H. Lin, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208–3212 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. I. Alayo, M. N. P. Carreρo, D. Criado, and I. Pereyra, “Optical and structural characterization of PECVD-silicon oxynitride films for waveguide device applications,” Proc. SPIE 5730, 250 (2005).
[CrossRef]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Sen. Act. B (1)

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sen. Act. B 29(1-3), 37–50 (1995).
[CrossRef]

Sens Act B (1)

B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens Act B 38–39, 277–282 (1997).
[CrossRef]

Sens. Act (1)

W. Lukosz and K. Tiefenthaler, “Sensitivity of integrated optical grating and prism couplers as (bio)-chemical sensors,” Sens. Act 15(3), 273–284 (1988).
[CrossRef]

Sens. Act. A (1)

B. Y. Shew, C. H. Kuo, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005).
[CrossRef]

Sens. Act. B (2)

F. Prieto, B. Sepϊlveda, A. Calle, A. Llobera, C. Domνnguez, and L. M. Lechuga, “Integrated mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Act. B 92(1-2), 151–158 (2003).
[CrossRef]

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Act. B 61(1-3), 100–127 (1999).
[CrossRef]

Other (2)

H. Zappe, Introduction to Semiconductor Integrated Optics (Artech House), Chap. 7.

Handbook of Chemistry and Physics, R. D. Weast, ed. (CRC Presse, Fla, 1978–79).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of (a) a standard planar waveguide MZI configuration, and (b) the cross-section of the simulated ridge-waveguide MZI

Fig. 2
Fig. 2

Output spectra of simulated IO FR-MZIs with a (a) 100nm-thick and (b) 150nm-thick ridge waveguide for a hypothetical immunoassay experiment. Binding of 0.5nm of target molecules on a uniform 4nm coating adlayer with nfilm=1.45 was assumed. Four distinct steps of the immunoassay are presented: introduction of the PBS buffer solution (circles), the coating of the sensing arm with a 4nm-thick adlayer of nf ilm=1.45 (trangles), introduction of the blocking solution and augmentation of the coating adlayer by 1nm (squares), and binding of the target molecules that increases the effective thickness of the adlayer by 0.5nm (diamonds). Insets: magnifications of the outlined regions.

Fig. 3
Fig. 3

Spectral shifts (circles) as obtained through the analytical expressions of Eqs. (6) and (16) in conjunction with the anticipated spectral difference (squares) of the semi-analytical approximation for the binding of 0.1nm of adlayer on a (a) 100nm-thick and (b) 150nm-thick (open symbols) IO FR-MZI with 300μm-long sensing arms.

Fig. 4
Fig. 4

Anticipated spectral shifts after the binding of 0.1nm of protein with nfilm=1.38-1.56 for a 100nm-thick FR-MZI for the emulated immunoassay experiment

Fig. 5
Fig. 5

Spectral shifts per nm of bound molecule as a function of the FR-MZI thickness for four wavelengths (λ=500, 700, 850 and 1000nm)

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

I o u t = I i n 2 [ 1 + cos ( Δ φ ( δ α ) ]
Δ ϕ = 2 π L λ [ N s ( λ , α ) N r ( λ ) ]
2 π L Δ N ( λ , α ) λ m = ( 2 m + 1 ) π L Δ N ( λ , α ) λ m = m + 1 2 , m = 0 , 1 , 2 ,
L Δ N ( λ , α + δ a ) λ m = m + 1 2
δ λ λ m = δ α Δ Ν ( λ m , α ) α Δ Ν ( λ m , α ) λ m Δ Ν ( λ , α ) λ | λ = λ m
δ λ λ m = δ α Ν s ( λ m , α ) α [ Ν s ( λ m , α ) λ m Ν s ( λ , α ) λ | λ = λ m ] [ Ν r ( λ m ) λ m N r ( λ ) λ | λ = λ m ]
δ Ν = ( N n cov ) δ n cov + ( Ν d ) δ d
N n cov = n cov N n w g 2 N 2 n w g 2 n cov 2 δ cov t e f f [ 2 ( N n cov ) 2 1 ] β
N d = n w g 2 N 2 N t e f f n f i l m 2 n cov 2 n w g 2 n cov 2 [ ( N n cov ) 2 + ( N n f i l m ) 2 1 ( N n cov ) 2 + ( N n w g ) 2 1 ] β
t e f f = t + i = s u b , cov δ i
δ i = λ 2 π 1 Ν 2 n i 2 [ 1 ( N n w g ) 2 + ( N n i ) 2 1 ] β
2 π λ cos θ = tan 1 sin 2 θ ( n cov n w g ) 2 cos 2 θ + tan 1 sin 2 θ ( n cov n s u b ) 2 cos 2 θ , f o r T E 00
2 π λ cos θ = tan 1 ( n w g n cov ) 2 sin 2 θ 1 ( n cov n w g ) 2 cos 2 θ + tan 1 ( n w g n s u b ) 2 sin 2 θ 1 ( n s u b n w g ) 2 cos 2 θ , f o r T M 00
N = n w g sin θ
λ = λ ο n w g
N λ = 2 π t Ν λ 2 ( n w g 2 N 2 ) 2 π t λ + 1 N 2 n cov 2 + 1 N 2 n s u b 2 , f o r T E 00
N λ = 2 π t Ν λ 2 ( n w g 2 N 2 ) 2 π t λ + i = s u b , cov n i 2 n w g 2 ( N 2 n i 2 ) 1 2 ( n i 2 N 2 + n w g 2 N 2 n i 2 n w g 2 ) , f o r T M 00
λ t 2 π t
δ λ λ δ α N s α Δ N > 0   ( redshift )  for  λ < < λ t  
δ λ λ δ α N s α Δ N < 0 ( blueshift ) for λ > > λ t
δ λ 4 π δ α N s 2 n cov 2

Metrics