Abstract

Metal gratings for in-coupling a Gaussian beam incident from broadside to the long-range surface plasmon polariton (LRSPP) propagating in one direction along a membrane-supported Au slab bounded by air or water are proposed and modeled by the finite-difference time-domain method. Grating couplers for out-coupling the propagating LRSPP into free radiation directed along broadside are also investigated. Short grating designs consisting of a small number of Au bumps yield 15% to 20% in-coupling efficiencies, and about 60% out-coupling efficiencies. LRSPP back-reflections along the membrane waveguide caused by the out-coupling grating are also calculated and discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [CrossRef]
  3. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
    [CrossRef]
  4. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008).
    [CrossRef]
  5. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  6. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
    [CrossRef]
  7. J. Dostálek, A. Kasry, and W. Knoll, “Long Range Surface Plasmons for Observation of Biomolecular Binding Events at Metallic Surfaces,” Plasmonics 2(3), 97–106 (2007).
    [CrossRef]
  8. V. N. Konopsky and E. V. Alieva, “Long-range plasmons in lossy metal films on photonic crystal surfaces,” Opt. Lett. 34(4), 479–481 (2009).
    [CrossRef] [PubMed]
  9. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
    [CrossRef] [PubMed]
  10. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons along membrane-supported metal stripes,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1479–1495 (2008).
    [CrossRef]
  11. R. Charbonneau and P. Berini, “Broadside coupling to long-range surface plasmons in metal stripes using prisms, particles, and an atomic force microscope probe,” Rev. Sci. Instrum. 79(7), 073106 (2008).
    [CrossRef] [PubMed]
  12. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
    [CrossRef]
  13. R. Charbonneau, E. Lisicka-Shrzek, and P. Berini, “Broadside coupling to long-range surface plasmons using an angle-cleaved optical fiber,” Appl. Phys. Lett. 92(10), 101102 (2008).
    [CrossRef]
  14. R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94(9), 091114 (2009).
    [CrossRef]
  15. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  16. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996).
    [CrossRef]
  17. J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
    [CrossRef]
  18. J. Lu, C. Petre, E. Yablonovitch, and J. Conway, “Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an Ag-SiO2 interface,” J. Opt. Soc. Am. B 24(9), 2268–2272 (2007).
    [CrossRef]
  19. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
    [CrossRef]
  20. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009).
    [CrossRef] [PubMed]
  21. A. Ghoshala and P. G. Kik, “Excitation of propagating surface plasmons by a periodic nanopartical array: trade-off between particle-induced near-field excitation and damping,” Appl. Phys. Lett. 94(25), 251102 (2009).
    [CrossRef]
  22. T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31(4), 2548–2550 (1985).
    [CrossRef]
  23. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
    [CrossRef]
  24. G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
    [CrossRef]
  25. I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
    [CrossRef]
  26. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons,” Opt. Express 17(10), 8294–8301 (2009).
    [CrossRef] [PubMed]
  27. C. Chen and P. Berini, “Broadside excitation of long-range surface plasmons via grating coupling,” IEEE Photon. Technol. Lett. 21(24), 1831–1833 (2009).
    [CrossRef]
  28. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, Orlando, Florida, 1985).
  29. D. J. Segelstein, “The complex refractive index of water,” M.Sc. Thesis, University of Missouri – Kansas City, (1981).
  30. C. Chen, and J. Albert, “Photo-induced signal taps for power monitors in planar lightwave circuits,” Proc. of SPIE, 5970, 59700I1–8 (2005).
  31. C. A. Flory, “Analysis of directional grating-coupled radiation in waveguide structures,” IEEE J. Quantum Electron. 40(7), 949–957 (2004).
    [CrossRef]
  32. F. D. T. D. Solutions, Lumerical Solutions Inc. http://www.lumerical.com .
  33. C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7(8), 260–272 (2000).
    [CrossRef] [PubMed]
  34. M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19(10), 1505–1514 (1983).
    [CrossRef]
  35. D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley Publishing Company, 2nd Edition 1989).

2009

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
[CrossRef]

V. N. Konopsky and E. V. Alieva, “Long-range plasmons in lossy metal films on photonic crystal surfaces,” Opt. Lett. 34(4), 479–481 (2009).
[CrossRef] [PubMed]

R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94(9), 091114 (2009).
[CrossRef]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009).
[CrossRef] [PubMed]

A. Ghoshala and P. G. Kik, “Excitation of propagating surface plasmons by a periodic nanopartical array: trade-off between particle-induced near-field excitation and damping,” Appl. Phys. Lett. 94(25), 251102 (2009).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons,” Opt. Express 17(10), 8294–8301 (2009).
[CrossRef] [PubMed]

C. Chen and P. Berini, “Broadside excitation of long-range surface plasmons via grating coupling,” IEEE Photon. Technol. Lett. 21(24), 1831–1833 (2009).
[CrossRef]

2008

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[CrossRef]

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons along membrane-supported metal stripes,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1479–1495 (2008).
[CrossRef]

R. Charbonneau and P. Berini, “Broadside coupling to long-range surface plasmons in metal stripes using prisms, particles, and an atomic force microscope probe,” Rev. Sci. Instrum. 79(7), 073106 (2008).
[CrossRef] [PubMed]

R. Charbonneau, E. Lisicka-Shrzek, and P. Berini, “Broadside coupling to long-range surface plasmons using an angle-cleaved optical fiber,” Appl. Phys. Lett. 92(10), 101102 (2008).
[CrossRef]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008).
[CrossRef]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

2007

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[CrossRef] [PubMed]

J. Dostálek, A. Kasry, and W. Knoll, “Long Range Surface Plasmons for Observation of Biomolecular Binding Events at Metallic Surfaces,” Plasmonics 2(3), 97–106 (2007).
[CrossRef]

J. Lu, C. Petre, E. Yablonovitch, and J. Conway, “Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an Ag-SiO2 interface,” J. Opt. Soc. Am. B 24(9), 2268–2272 (2007).
[CrossRef]

2006

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[CrossRef]

G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

2005

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

2004

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[CrossRef]

C. A. Flory, “Analysis of directional grating-coupled radiation in waveguide structures,” IEEE J. Quantum Electron. 40(7), 949–957 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2000

1998

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

1996

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996).
[CrossRef]

1985

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31(4), 2548–2550 (1985).
[CrossRef]

1983

M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19(10), 1505–1514 (1983).
[CrossRef]

Alieva, E. V.

Arakawa, E. T.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31(4), 2548–2550 (1985).
[CrossRef]

Barnes, W. L.

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996).
[CrossRef]

Berini, P.

R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94(9), 091114 (2009).
[CrossRef]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009).
[CrossRef]

C. Chen and P. Berini, “Broadside excitation of long-range surface plasmons via grating coupling,” IEEE Photon. Technol. Lett. 21(24), 1831–1833 (2009).
[CrossRef]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008).
[CrossRef]

R. Charbonneau, E. Lisicka-Shrzek, and P. Berini, “Broadside coupling to long-range surface plasmons using an angle-cleaved optical fiber,” Appl. Phys. Lett. 92(10), 101102 (2008).
[CrossRef]

R. Charbonneau and P. Berini, “Broadside coupling to long-range surface plasmons in metal stripes using prisms, particles, and an atomic force microscope probe,” Rev. Sci. Instrum. 79(7), 073106 (2008).
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons along membrane-supported metal stripes,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1479–1495 (2008).
[CrossRef]

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7(8), 260–272 (2000).
[CrossRef] [PubMed]

Bolivar, P. H.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Boltasseva, A.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[CrossRef]

Bozhevolnyi, S. I.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[CrossRef]

Brucoli, G.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[CrossRef]

Charbonneau, R.

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons along membrane-supported metal stripes,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1479–1495 (2008).
[CrossRef]

R. Charbonneau, E. Lisicka-Shrzek, and P. Berini, “Broadside coupling to long-range surface plasmons using an angle-cleaved optical fiber,” Appl. Phys. Lett. 92(10), 101102 (2008).
[CrossRef]

R. Charbonneau and P. Berini, “Broadside coupling to long-range surface plasmons in metal stripes using prisms, particles, and an atomic force microscope probe,” Rev. Sci. Instrum. 79(7), 073106 (2008).
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

Chen, C.

C. Chen and P. Berini, “Broadside excitation of long-range surface plasmons via grating coupling,” IEEE Photon. Technol. Lett. 21(24), 1831–1833 (2009).
[CrossRef]

C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7(8), 260–272 (2000).
[CrossRef] [PubMed]

Conway, J.

Daviau, R.

R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94(9), 091114 (2009).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dostálek, J.

J. Dostálek, A. Kasry, and W. Knoll, “Long Range Surface Plasmons for Observation of Biomolecular Binding Events at Metallic Surfaces,” Plasmonics 2(3), 97–106 (2007).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Feng, D.

Flory, C. A.

C. A. Flory, “Analysis of directional grating-coupled radiation in waveguide structures,” IEEE J. Quantum Electron. 40(7), 949–957 (2004).
[CrossRef]

García-Vidal, F. J.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[CrossRef]

Ghoshala, A.

A. Ghoshala and P. G. Kik, “Excitation of propagating surface plasmons by a periodic nanopartical array: trade-off between particle-induced near-field excitation and damping,” Appl. Phys. Lett. 94(25), 251102 (2009).
[CrossRef]

Goudonnet, J. P.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31(4), 2548–2550 (1985).
[CrossRef]

Haus, H.

M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19(10), 1505–1514 (1983).
[CrossRef]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Hooper, I. R.

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[CrossRef]

Inagaki, T.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31(4), 2548–2550 (1985).
[CrossRef]

Kasry, A.

J. Dostálek, A. Kasry, and W. Knoll, “Long Range Surface Plasmons for Observation of Biomolecular Binding Events at Metallic Surfaces,” Plasmonics 2(3), 97–106 (2007).
[CrossRef]

Kawata, S.

Kik, P. G.

A. Ghoshala and P. G. Kik, “Excitation of propagating surface plasmons by a periodic nanopartical array: trade-off between particle-induced near-field excitation and damping,” Appl. Phys. Lett. 94(25), 251102 (2009).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996).
[CrossRef]

Knoll, W.

J. Dostálek, A. Kasry, and W. Knoll, “Long Range Surface Plasmons for Observation of Biomolecular Binding Events at Metallic Surfaces,” Plasmonics 2(3), 97–106 (2007).
[CrossRef]

Konopsky, V. N.

Kurz, H.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Kuttge, M.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19(10), 1505–1514 (1983).
[CrossRef]

Lahoud, N.

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons along membrane-supported metal stripes,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1479–1495 (2008).
[CrossRef]

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

Lévêque, G.

G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

Lisicka-Shrzek, E.

R. Charbonneau, E. Lisicka-Shrzek, and P. Berini, “Broadside coupling to long-range surface plasmons using an angle-cleaved optical fiber,” Appl. Phys. Lett. 92(10), 101102 (2008).
[CrossRef]

Lisicka-Skrzek, E.

R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94(9), 091114 (2009).
[CrossRef]

Lu, J.

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Martin, O. J. F.

G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

Martín-Moreno, L.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[CrossRef]

Mattiussi, G.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

Motosuga, M.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31(4), 2548–2550 (1985).
[CrossRef]

Okamoto, T.

Parriaux, O.

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

Petre, C.

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996).
[CrossRef]

Pudonin, F. A.

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

Radko, I. P.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009).
[CrossRef] [PubMed]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[CrossRef]

Rivas, J. G.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Salakhutdinov, I. F.

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

Sambles, J. R.

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996).
[CrossRef]

Sánchez-Gil, J. A.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Simonen, J.

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Sychugov, V. A.

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

Tait, R. N.

R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94(9), 091114 (2009).
[CrossRef]

Tanev, S.

Tishchenko, A. V.

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

Tzolov, V.

Usievich, B. A.

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

Yablonovitch, E.

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Adv. Opt. Photon.

Appl. Phys. Lett.

R. Charbonneau, E. Lisicka-Shrzek, and P. Berini, “Broadside coupling to long-range surface plasmons using an angle-cleaved optical fiber,” Appl. Phys. Lett. 92(10), 101102 (2008).
[CrossRef]

R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94(9), 091114 (2009).
[CrossRef]

A. Ghoshala and P. G. Kik, “Excitation of propagating surface plasmons by a periodic nanopartical array: trade-off between particle-induced near-field excitation and damping,” Appl. Phys. Lett. 94(25), 251102 (2009).
[CrossRef]

Chem. Rev.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

C. A. Flory, “Analysis of directional grating-coupled radiation in waveguide structures,” IEEE J. Quantum Electron. 40(7), 949–957 (2004).
[CrossRef]

M. Kuznetsov and H. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quantum Electron. 19(10), 1505–1514 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons along membrane-supported metal stripes,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1479–1495 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Chen and P. Berini, “Broadside excitation of long-range surface plasmons via grating coupling,” IEEE Photon. Technol. Lett. 21(24), 1831–1833 (2009).
[CrossRef]

J. Appl. Phys.

G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys. 100, 124301 (2006).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[CrossRef]

J. Opt. Soc. Am. B

N. J. Phys.

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008).
[CrossRef]

Nano Lett.

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rep.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Phys. Rev. B

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996).
[CrossRef]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78(11), 115115 (2008).
[CrossRef]

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31(4), 2548–2550 (1985).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[CrossRef]

Phys. Rev. Lett.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Plasmonics

J. Dostálek, A. Kasry, and W. Knoll, “Long Range Surface Plasmons for Observation of Biomolecular Binding Events at Metallic Surfaces,” Plasmonics 2(3), 97–106 (2007).
[CrossRef]

Rev. Sci. Instrum.

R. Charbonneau and P. Berini, “Broadside coupling to long-range surface plasmons in metal stripes using prisms, particles, and an atomic force microscope probe,” Rev. Sci. Instrum. 79(7), 073106 (2008).
[CrossRef] [PubMed]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, Orlando, Florida, 1985).

D. J. Segelstein, “The complex refractive index of water,” M.Sc. Thesis, University of Missouri – Kansas City, (1981).

C. Chen, and J. Albert, “Photo-induced signal taps for power monitors in planar lightwave circuits,” Proc. of SPIE, 5970, 59700I1–8 (2005).

D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley Publishing Company, 2nd Edition 1989).

F. D. T. D. Solutions, Lumerical Solutions Inc. http://www.lumerical.com .

Supplementary Material (4)

» Media 1: MPG (1741 KB)     
» Media 2: MPG (1942 KB)     
» Media 3: MPG (1833 KB)     
» Media 4: MPG (2112 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Membrane waveguides comprised of an Au slab on a Si3N4 membrane bounded by air or water with rectangular grating bumps; (a) in-coupling and (b) out-coupling gratings.

Fig. 2
Fig. 2

Px (−4) and Px (−14) as a function of grating period Λ. (a) Structure bounded by air, W = 630 nm and H = 150 nm. (b) Structure bounded by water, W = 490 nm and H = 110 nm.

Fig. 3
Fig. 3

Px (−14) as a function of grating dimensions W and H. (a) Structure bounded by air, Λ = 1200 nm. (b) Structure bounded by water, Λ = 930 nm.

Fig. 4
Fig. 4

Monitored powers versus beam offset p (in Λ). (a) Structure bounded by air, Λ = 1200 nm, W = 630 nm and H = 160 nm. (b) Structure bounded by water, Λ = 930 nm, W = 470 nm and H = 120 nm.

Fig. 5
Fig. 5

Distribution of Ey along y, normalised to the field amplitude of the incident beam, at various locations (x) from the left edge of the grating. (a, b) Structure bounded by air, Λ = 1200 nm, W = 630 nm, H = 160 nm and p = 4Λ. (c, d) Structure bounded by water, Λ = 930 nm, W = 470 nm, H = 120 nm and p = 3.5Λ. (a, c) Fields close to the grating (x > −25 μm); (b,d) fields far from the grating (x < −25 μm).

Fig. 6
Fig. 6

Movies of the time-evolution of the Ex and Ey fields over a portion of the computational domain (120 µm × 30 µm), normalised to the field amplitude of the incident beam. (a, b) Ex (Media 1) and Ey (Media 2), respectively, for the structure bounded by air, Λ = 1200 nm, W = 630 nm, H = 160 nm and p = 4Λ. (c, d) Ex (Media 3) and Ey (Media 4), respectively, for the structure bounded by water, Λ = 930 nm, W = 470 nm, H = 120 nm and p = 3.5Λ.

Fig. 7
Fig. 7

Plots of Px (x) as a function of inverse distance from the grating (−1/x). Also plotted are the convergence of Px,0 (the in-coupling loss) and of the MPA of the LRSPP. (a) Structure bounded by air, Λ = 1200 nm, W = 630 nm, H = 160 nm and p = 4Λ. (b) Structure bounded by water, Λ = 930 nm, W = 470 nm, H = 120 nm and p = 3.5Λ.

Fig. 8
Fig. 8

Py (4) as a function of grating period Λ and bump width W. (a) Structure bounded by air, H = 160 nm, 11 bumps. (b) Structure bounded by water, H = 120 nm, 11 bumps.

Fig. 9
Fig. 9

Py (4) as a function of the number of grating bumps. Structure bounded by air: Λ = 1200 nm, W = 580 nm, H = 160 nm. Structure bounded by water: Λ = 920 nm, W = 460 nm, H = 120.

Fig. 10
Fig. 10

Distribution of Ex along x, normalised to the field amplitude of the incident LRSPP, as a function of distance y above the grating. (a) Structure bounded by air: Λ = 1200 nm, W = 580 nm, H = 160 nm. (b) Structure bounded by water: Λ = 920 nm, W = 460 nm, H = 120. 31 grating bumps were used in both cases.

Fig. 11
Fig. 11

Field distribution over portions of the computational domain normalised to the field amplitude of the LRSPP for the same grating designs as in Fig. 10. (a) Ey field distribution, structure bounded by air; (b) Ex field distribution, structure bounded by air; (c) Ey field distribution, structure bounded by water; (d) Ex field distribution, structure bounded by water.

Fig. 12
Fig. 12

Distribution of Ey along x at y = 30 nm. The region x ~-100 μm is shown as the inset.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Λ = m λ 0 / ( n e f f , a n 1 sin θ )
Λ λ 0 / n e f f
P x ( x ) = P x , 0 e 2 α ( x x 0 ) + P x , r ( x )
P x ( x ) P x , 0 e 2 α ( x x 0 )
s L = E y , max / E y , min
| Γ L | = ( s L 1 ) / ( s L + 1 )
| Γ 0 | = | Γ L | / e 2 α L

Metrics