Abstract

A new interferometric technique is described to measure the complex modulation curve of a spatial light modulator. Based on a lateral shear imaging interferometer, it enables the amplitude and phase modulation for several modulation levels to be displayed simultaneously in a single interferogram. As an example of the power of this technique a heuristic optimization of input and output elliptical polarization states for a mostly-phase operation mode was obtained within a few minutes for a commercial twisted-nematic liquid crystal display.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  2. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
    [CrossRef] [PubMed]
  3. B. E. A. Saleh and K. Lu, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29(3), 240–246 (1990).
    [CrossRef]
  4. I. Moreno, P. Velasquez, C. R. Fernandez-Pousa, M. M. Sanchez-Lopez, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
    [CrossRef]
  5. I. Moreno, A. Lizana, J. Campos, A. Márquez, C. Iemmi, and M. J. Yzuel, “Combined Mueller and Jones matrix method for the evaluation of the complex modulation in a liquid-crystal-on-silicon display,” Opt. Lett. 33(6), 627–629 (2008).
    [CrossRef] [PubMed]
  6. A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40(11), 2558–2564 (2001).
    [CrossRef]
  7. C. Soutar, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33(4), 1061–1068 (1994).
    [CrossRef]
  8. D. Engström, G. Milewski, J. Bengtsson, and S. Galt, “Diffraction-based determination of the phase modulation for general spatial light modulators,” Appl. Opt. 45(28), 7195–7204 (2006).
    [CrossRef] [PubMed]
  9. L. G. Neto, D. Roberge, and Y. Sheng, “Programmable optical phase-mostly holograms with coupled-mode modulation liquid-crystal television,” Appl. Opt. 34(11), 1944–1950 (1995).
    [CrossRef] [PubMed]
  10. J. L. Pezzaniti and R. A. Chipman, “Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states,” Opt. Lett. 18(18), 1567–1569 (1993).
    [CrossRef] [PubMed]
  11. K. A. Goldberg and J. Bokor, “Fourier-transform method of phase-shift determination,” Appl. Opt. 40(17), 2886–2894 (2001).
    [CrossRef]
  12. J. Remenyi, P. Koppa, L. Domjan, and E. Loerincz, “Phase modulation configuration of a liquid crystal display,” Proc. SPIE 4829, 815–816 (2004).
    [CrossRef]

2008

2006

2004

J. Remenyi, P. Koppa, L. Domjan, and E. Loerincz, “Phase modulation configuration of a liquid crystal display,” Proc. SPIE 4829, 815–816 (2004).
[CrossRef]

2003

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

I. Moreno, P. Velasquez, C. R. Fernandez-Pousa, M. M. Sanchez-Lopez, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
[CrossRef]

2001

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

K. A. Goldberg and J. Bokor, “Fourier-transform method of phase-shift determination,” Appl. Opt. 40(17), 2886–2894 (2001).
[CrossRef]

1998

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[CrossRef] [PubMed]

1995

1994

C. Soutar, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33(4), 1061–1068 (1994).
[CrossRef]

1993

1990

B. E. A. Saleh and K. Lu, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29(3), 240–246 (1990).
[CrossRef]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Bengtsson, J.

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Bokor, J.

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Campos, J.

I. Moreno, A. Lizana, J. Campos, A. Márquez, C. Iemmi, and M. J. Yzuel, “Combined Mueller and Jones matrix method for the evaluation of the complex modulation in a liquid-crystal-on-silicon display,” Opt. Lett. 33(6), 627–629 (2008).
[CrossRef] [PubMed]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Chipman, R. A.

Davis, J. A.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Domjan, L.

J. Remenyi, P. Koppa, L. Domjan, and E. Loerincz, “Phase modulation configuration of a liquid crystal display,” Proc. SPIE 4829, 815–816 (2004).
[CrossRef]

Engström, D.

Fernandez-Pousa, C. R.

I. Moreno, P. Velasquez, C. R. Fernandez-Pousa, M. M. Sanchez-Lopez, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
[CrossRef]

Galt, S.

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Goldberg, K. A.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Iemmi, C.

I. Moreno, A. Lizana, J. Campos, A. Márquez, C. Iemmi, and M. J. Yzuel, “Combined Mueller and Jones matrix method for the evaluation of the complex modulation in a liquid-crystal-on-silicon display,” Opt. Lett. 33(6), 627–629 (2008).
[CrossRef] [PubMed]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Koppa, P.

J. Remenyi, P. Koppa, L. Domjan, and E. Loerincz, “Phase modulation configuration of a liquid crystal display,” Proc. SPIE 4829, 815–816 (2004).
[CrossRef]

Lizana, A.

Loerincz, E.

J. Remenyi, P. Koppa, L. Domjan, and E. Loerincz, “Phase modulation configuration of a liquid crystal display,” Proc. SPIE 4829, 815–816 (2004).
[CrossRef]

Lu, K.

B. E. A. Saleh and K. Lu, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29(3), 240–246 (1990).
[CrossRef]

Márquez, A.

I. Moreno, A. Lizana, J. Campos, A. Márquez, C. Iemmi, and M. J. Yzuel, “Combined Mueller and Jones matrix method for the evaluation of the complex modulation in a liquid-crystal-on-silicon display,” Opt. Lett. 33(6), 627–629 (2008).
[CrossRef] [PubMed]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Mateos, F.

I. Moreno, P. Velasquez, C. R. Fernandez-Pousa, M. M. Sanchez-Lopez, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
[CrossRef]

Milewski, G.

Moreno, I.

I. Moreno, A. Lizana, J. Campos, A. Márquez, C. Iemmi, and M. J. Yzuel, “Combined Mueller and Jones matrix method for the evaluation of the complex modulation in a liquid-crystal-on-silicon display,” Opt. Lett. 33(6), 627–629 (2008).
[CrossRef] [PubMed]

I. Moreno, P. Velasquez, C. R. Fernandez-Pousa, M. M. Sanchez-Lopez, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
[CrossRef]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Neto, L. G.

Pezzaniti, J. L.

Remenyi, J.

J. Remenyi, P. Koppa, L. Domjan, and E. Loerincz, “Phase modulation configuration of a liquid crystal display,” Proc. SPIE 4829, 815–816 (2004).
[CrossRef]

Roberge, D.

Saleh, B. E. A.

B. E. A. Saleh and K. Lu, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29(3), 240–246 (1990).
[CrossRef]

Sanchez-Lopez, M. M.

I. Moreno, P. Velasquez, C. R. Fernandez-Pousa, M. M. Sanchez-Lopez, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
[CrossRef]

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Sheng, Y.

Soutar, C.

C. Soutar, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33(4), 1061–1068 (1994).
[CrossRef]

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Velasquez, P.

I. Moreno, P. Velasquez, C. R. Fernandez-Pousa, M. M. Sanchez-Lopez, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
[CrossRef]

Yzuel, M. J.

I. Moreno, A. Lizana, J. Campos, A. Márquez, C. Iemmi, and M. J. Yzuel, “Combined Mueller and Jones matrix method for the evaluation of the complex modulation in a liquid-crystal-on-silicon display,” Opt. Lett. 33(6), 627–629 (2008).
[CrossRef] [PubMed]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

I. Moreno, P. Velasquez, C. R. Fernandez-Pousa, M. M. Sanchez-Lopez, and F. Mateos, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94(6), 3697–3702 (2003).
[CrossRef]

Nature

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Eng.

B. E. A. Saleh and K. Lu, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29(3), 240–246 (1990).
[CrossRef]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

C. Soutar, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33(4), 1061–1068 (1994).
[CrossRef]

Opt. Lett.

Proc. SPIE

J. Remenyi, P. Koppa, L. Domjan, and E. Loerincz, “Phase modulation configuration of a liquid crystal display,” Proc. SPIE 4829, 815–816 (2004).
[CrossRef]

Science

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Shear interferometer with imaging. Two replica images of the SLM, laterally sheared s’, are superposed on the camera. If the SLM is illuminated by a Gaussian beam with radius of curvature R, interference fringes are formed in the image plane with a period given by Eq. (2).

Fig. 2
Fig. 2

The SLM is modulated with a vertically graded modulation pattern T, surrounded by a reference uniform modulation T 0. An edge barrier is inserted laterally leaving a modulated area with width equal to the shear s. The shear interferometer (Fig. 1) superposes the T and T 0 regions, producing interference fringes whose relative shift measure phase modulation. The edge barrier blocks interference fringes in region T, revealing amplitude modulation.

Fig. 3
Fig. 3

The SLM consists of a TN-LC display between elliptical polarization generator and detector. By adjusting the collimating lens of the beam expander it is possible to vary the radius of curvature of the incoming incident beam, therefore varying the fringe spacing displayed in the shearing interferometer (Fig. 1).

Fig. 4
Fig. 4

Interferogram obtained with the shear interferometer for a TN-LCD. Left half part displays amplitude modulation whereas right part displays phase modulation. For illustration only four levels of modulation are used. The lateral shear imposed by the parallel plate is illustrated by the twin image of the computer mouse pointer. (Media 1 for a detailed view.)

Fig. 5
Fig. 5

Mostly-phase modulation obtained for the TN-LCD at a wavelength of 514 nm. (a) Interferogram for 64 levels of modulation [uniformly covering 0-255 gray levels] optimized visually for maximum phase variation and minimum amplitude variation; (b) corresponding modulation curve obtained afterwards by analysis of the optimized interferogram.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

s = t sin ( 2 θ ) / n 2 sin 2 ( θ ) .
d f = m λ s | R |     ,

Metrics