Abstract

We report a self-phase-modulation (SPM) mitigation method in the electrical domain for 16-level amplitude-and-differential-phase-shift keying (16-ADPSK) signals. The method helps to increases the transmission distance of 60-Gbit/s/channel 16-ADPSK systems by around 1.5 times.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430-423 (2005).
    [CrossRef]
  2. R. I. Killey, “Dispersion and nonlinearity compensation using electronic predistortion techniques” in the IEE Seminar on Fibre Communications and Electronic Signal Processing 2005–11310, 0–14–2/6 (15 Dec. 2005).
  3. R. J. Essiambre, P. J. Winzer, X. Qing Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
    [CrossRef]
  4. K. Roberts, C. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
    [CrossRef]
  5. X. Liu and D. A. Fishman, “A fast and reliable algorithm for electronic pre-equalization of SPM and chromatic dispersion,” in Tech. Digest of the Conference on Optical Fiber Communication, 2006, Anaheim, CA, Paper OThD4.
  6. C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” J. Sel. Top. Quanum Electron. 10, 281–293 (2004).
    [CrossRef]
  7. G. Goeger, “Modulation format with enhanced SPM-robustness for electronically pre-distorted transmission,” in Tech. Digest of the Conference on Optical Communications, 2006, Anaheim, CA, Paper Tu4.2.6.
  8. C. Xia and W. Rosenkranz, “Mitigation of intrachannel nonlinearity using nonlinear electrical equalization,” in Tech. Digest of the Conference on Optical Communications, 2006, Anaheim, CA, Paper We1.5.3.
  9. C. Xu and X. Liu, “Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission,” Opt. Lett. 27(18), 1619–1621 (2002).
    [CrossRef]
  10. K. P. Ho and J. M. Kahn, “Electronic compensation technique to mitigate non-linear phase noise,” J. Lightwave Technol. 10, 421–427 (2004).
  11. N. Kikuchi, K. Mandai, and S. Sasaki, “Compensation of nonlinear phase-shift in incoherent multilevel receiver with digital signal processing,” in Tech. Digest of the Conference on Optical Communications, 2007, Anaheim, CA, Paper Th9.4.1.
  12. S. Oda, T. Tanimura, T. Hoshida, C. Ohshima, H. Nakashima, Z. Tao, and J. C. Rasmussen, “112 Gb/s DP-QPSK transmission using a novel nonlinear compensator in digital coherent receiver,” in Tech. Digest of the Conference on Optical Communications, 2009, San Diego, CA, Paper OThR6.
  13. D. S. Millar, S. Makovejs, V. Mikhailov, R. I. Killey, P. Bayvel, and S. J. Savory, “Experimental comparison of nonlinear compensation in long-haul PDM-QPSK transmission at 42.7 and 85.4 Gb/s, ” in Tech. Digest of European Conference on Optical Communications, 2009, Paper 9.4.4.
  14. A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,” Opt. Express 15(20), 12965–12970 (2007).
    [CrossRef] [PubMed]
  15. D. Tran, H. T. Liem, and L. N. Binh, “Simulation of a novel photonic transmission system using M-ary amplitude-differential phase shift keying modulation format,” in Proceedings of the Workshop on the Applications of Radio Science 2006, (WARS2006, Leura, NSW, Australia, 2006).
  16. D. Tran, H. T. Liem, and L. N. Binh, “Multi-level amplitude-differential phase shift keying (MADPSK) modulation formats for long-haul optical transmission systems,” in Proceedings of Asia-Pacific Optical Communications Conference 2006, (APOC2006, Gwangju, Korea, 2006).
  17. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
    [CrossRef] [PubMed]
  18. “Corning® Vascade® Optical Fiber Product Information,” (Corning Incorporated, 2006), http://www.corning.com/docs/opticalfiber/pi1445.pdf .
  19. S. Norimatsu and K. Ito, “Performance comparison of optical modulation formats for 40 Gbit/s systems from the viewpoint of frequency utilization efficiency and tolerance for fiber nonlinearities,” J. Electron. Commun. in Japan 89(Part 1), 210–223 (2006).

2007 (1)

2006 (3)

R. J. Essiambre, P. J. Winzer, X. Qing Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

K. Roberts, C. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

S. Norimatsu and K. Ito, “Performance comparison of optical modulation formats for 40 Gbit/s systems from the viewpoint of frequency utilization efficiency and tolerance for fiber nonlinearities,” J. Electron. Commun. in Japan 89(Part 1), 210–223 (2006).

2005 (1)

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430-423 (2005).
[CrossRef]

2004 (2)

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” J. Sel. Top. Quanum Electron. 10, 281–293 (2004).
[CrossRef]

K. P. Ho and J. M. Kahn, “Electronic compensation technique to mitigate non-linear phase noise,” J. Lightwave Technol. 10, 421–427 (2004).

2002 (1)

1990 (1)

Burrows, E. C.

R. J. Essiambre, P. J. Winzer, X. Qing Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

Essiambre, R. J.

R. J. Essiambre, P. J. Winzer, X. Qing Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

Gordon, J. P.

Hardcastle, I.

K. Roberts, C. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Hasegawa, C.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430-423 (2005).
[CrossRef]

Hayase, S.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430-423 (2005).
[CrossRef]

Ho, K. P.

K. P. Ho and J. M. Kahn, “Electronic compensation technique to mitigate non-linear phase noise,” J. Lightwave Technol. 10, 421–427 (2004).

Ito, K.

S. Norimatsu and K. Ito, “Performance comparison of optical modulation formats for 40 Gbit/s systems from the viewpoint of frequency utilization efficiency and tolerance for fiber nonlinearities,” J. Electron. Commun. in Japan 89(Part 1), 210–223 (2006).

Kahn, J. M.

K. P. Ho and J. M. Kahn, “Electronic compensation technique to mitigate non-linear phase noise,” J. Lightwave Technol. 10, 421–427 (2004).

Kikuchi, N.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430-423 (2005).
[CrossRef]

Lee, W.

R. J. Essiambre, P. J. Winzer, X. Qing Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

Li, C.

K. Roberts, C. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Liu, X.

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” J. Sel. Top. Quanum Electron. 10, 281–293 (2004).
[CrossRef]

C. Xu and X. Liu, “Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission,” Opt. Lett. 27(18), 1619–1621 (2002).
[CrossRef]

Lowery, A. J.

Mollenauer, L. F.

Norimatsu, S.

S. Norimatsu and K. Ito, “Performance comparison of optical modulation formats for 40 Gbit/s systems from the viewpoint of frequency utilization efficiency and tolerance for fiber nonlinearities,” J. Electron. Commun. in Japan 89(Part 1), 210–223 (2006).

O'Sullivan, M.

K. Roberts, C. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Qing Wang, X.

R. J. Essiambre, P. J. Winzer, X. Qing Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

Roberts, K.

K. Roberts, C. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Sasaki, S.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430-423 (2005).
[CrossRef]

Sekine, K.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430-423 (2005).
[CrossRef]

Strawczynski, L.

K. Roberts, C. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Sugawara, T.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430-423 (2005).
[CrossRef]

Wei, X.

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” J. Sel. Top. Quanum Electron. 10, 281–293 (2004).
[CrossRef]

White, C. A.

R. J. Essiambre, P. J. Winzer, X. Qing Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

Winzer, P. J.

R. J. Essiambre, P. J. Winzer, X. Qing Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

Xu, C.

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” J. Sel. Top. Quanum Electron. 10, 281–293 (2004).
[CrossRef]

C. Xu and X. Liu, “Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission,” Opt. Lett. 27(18), 1619–1621 (2002).
[CrossRef]

Electron. Lett. (1)

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430-423 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. J. Essiambre, P. J. Winzer, X. Qing Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18(17), 1804–1806 (2006).
[CrossRef]

K. Roberts, C. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

J. Electron. Commun. in Japan (1)

S. Norimatsu and K. Ito, “Performance comparison of optical modulation formats for 40 Gbit/s systems from the viewpoint of frequency utilization efficiency and tolerance for fiber nonlinearities,” J. Electron. Commun. in Japan 89(Part 1), 210–223 (2006).

J. Lightwave Technol. (1)

K. P. Ho and J. M. Kahn, “Electronic compensation technique to mitigate non-linear phase noise,” J. Lightwave Technol. 10, 421–427 (2004).

J. Sel. Top. Quanum Electron. (1)

C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” J. Sel. Top. Quanum Electron. 10, 281–293 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (10)

G. Goeger, “Modulation format with enhanced SPM-robustness for electronically pre-distorted transmission,” in Tech. Digest of the Conference on Optical Communications, 2006, Anaheim, CA, Paper Tu4.2.6.

C. Xia and W. Rosenkranz, “Mitigation of intrachannel nonlinearity using nonlinear electrical equalization,” in Tech. Digest of the Conference on Optical Communications, 2006, Anaheim, CA, Paper We1.5.3.

N. Kikuchi, K. Mandai, and S. Sasaki, “Compensation of nonlinear phase-shift in incoherent multilevel receiver with digital signal processing,” in Tech. Digest of the Conference on Optical Communications, 2007, Anaheim, CA, Paper Th9.4.1.

S. Oda, T. Tanimura, T. Hoshida, C. Ohshima, H. Nakashima, Z. Tao, and J. C. Rasmussen, “112 Gb/s DP-QPSK transmission using a novel nonlinear compensator in digital coherent receiver,” in Tech. Digest of the Conference on Optical Communications, 2009, San Diego, CA, Paper OThR6.

D. S. Millar, S. Makovejs, V. Mikhailov, R. I. Killey, P. Bayvel, and S. J. Savory, “Experimental comparison of nonlinear compensation in long-haul PDM-QPSK transmission at 42.7 and 85.4 Gb/s, ” in Tech. Digest of European Conference on Optical Communications, 2009, Paper 9.4.4.

D. Tran, H. T. Liem, and L. N. Binh, “Simulation of a novel photonic transmission system using M-ary amplitude-differential phase shift keying modulation format,” in Proceedings of the Workshop on the Applications of Radio Science 2006, (WARS2006, Leura, NSW, Australia, 2006).

D. Tran, H. T. Liem, and L. N. Binh, “Multi-level amplitude-differential phase shift keying (MADPSK) modulation formats for long-haul optical transmission systems,” in Proceedings of Asia-Pacific Optical Communications Conference 2006, (APOC2006, Gwangju, Korea, 2006).

“Corning® Vascade® Optical Fiber Product Information,” (Corning Incorporated, 2006), http://www.corning.com/docs/opticalfiber/pi1445.pdf .

X. Liu and D. A. Fishman, “A fast and reliable algorithm for electronic pre-equalization of SPM and chromatic dispersion,” in Tech. Digest of the Conference on Optical Fiber Communication, 2006, Anaheim, CA, Paper OThD4.

R. I. Killey, “Dispersion and nonlinearity compensation using electronic predistortion techniques” in the IEE Seminar on Fibre Communications and Electronic Signal Processing 2005–11310, 0–14–2/6 (15 Dec. 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

16-ADPSK optical transmission system, top, with details of the transmitter, bottom left, and receiver, bottom right.

Fig. 2
Fig. 2

Typical 16-ADPSK signal constellations: (a) transmitted and (b) received showing the effect of self-phase modulation (SPM).

Fig. 3
Fig. 3

Pre-distortion and compensation of phases (1) which compensates for the SPM in the fiber (2).

Fig. 4
Fig. 4

(a) Dispersion map and channel power profile of the double-stage OA scheme and (b) single-stage OA scheme.

Fig. 5
Fig. 5

(a) Signal quality versus channel input power and compensation factor for a single-channel system showing the effect of the compensation factor, q; (b) Signal quality versus channel input power for single-channel and WDM systems for optimum q.

Fig. 6
Fig. 6

(a) Noise and nonlinearity limits to 60-Gbit/s double-stage OA systems and (b) to 60-Gbit/s single-stage OA systems. c) Chromatic dispersion limits to 60-Gbit/s double-stage OA system and (b) to 60-Gbit/s single-stage OA systems.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

φ N L , i = γ L e f f { | E i + n 1 | 2 + | E i + n 1 + n 2 | 2 + ... + | E i + n 1 + n 2 ... + n s | 2 }
φ N L , i = s γ L e f f ( | E i | 2 + ( s + 1 ) σ A S E 2 )
Δ φ N L , i j demod = φ N L , i φ N L , j = s γ L e f f ( | E i | 2 | E j | 2 )
Δ V i = q φ N L , i V π π
Δ V j = q φ N L , j V π π
Q e f f , d B 20 log 10 ( 2 erfc 1 ( 2 B E R ) )

Metrics