Abstract

We study the effective linear and nonlinear optical parameters of composites containing noble metal nanoparticles and their dependence on the shape and size of the particles. Our numerical approach is based on the effective medium approximation combined with discrete dipole approximation, which results in a fast and accurate numerical method. The results demonstrate the possibility to achieve large enhancements of the linear and nonlinear optical parameters by tuning the plasmon resonance to a desired frequency by changing the size and the shape of the nanoparticles.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and applications (Springer Verlag, Berlin, 2007).
  2. J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
    [CrossRef]
  3. M. Pelton, J. Aizpurua, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008).
    [CrossRef]
  4. S. M. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  5. S.-C. Kim, J.-H. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [CrossRef] [PubMed]
  6. C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
    [CrossRef] [PubMed]
  7. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]
  8. R. Driben, A. Husakou, and J. Herrmann, “Supercontinuum generation in aqueous colloids containing silver nanoparticles,” Opt. Lett. 34(14), 2132–2134 (2009).
    [CrossRef] [PubMed]
  9. R. Driben, A. Husakou, and J. Herrmann, “Low-threshold supercontinuum generation in glasses doped with silver nanoparticles,” Opt. Express 17(20), 17989–17995 (2009).
    [CrossRef] [PubMed]
  10. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  11. N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Linear and nonlinear optical response of silver nanoprisms: local electric fields of dipole and quadrupole plasmon resonances,” J. Phys. Chem. B 108(26), 8751–8755 (2004).
    [CrossRef]
  12. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley, New York, 1957), Chapters 9 and 10.
  13. F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quantum. Spectrosc. Radiat. Transf. 79–80, 775–824 (2003).
    [CrossRef]
  14. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [CrossRef]
  15. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [CrossRef]
  16. J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett. 16(15), 1198–1200 (1991).
    [CrossRef] [PubMed]
  17. T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999).
    [CrossRef]
  18. M. A. Yurkin, and A. G. Hoestra, “The discrete dipole approximation: an overview and recent developments,” http://arxiv.org/ftp /arxiv/papers/0704/0704.0038.pdf .
  19. W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103(3), 869–875 (1995).
    [CrossRef]
  20. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
    [CrossRef] [PubMed]
  21. D. C. Kohlgraf-Owens and P. G. Kik, “Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays,” Opt. Express 17(17), 15032–15042 (2009).
    [CrossRef] [PubMed]
  22. D. C. Kohlgraf-Owens and P. G. Kik, “Numerical study of surface plasmon enhanced nonlinear absorption and refraction,” Opt. Express 16(14), 10823–10834 (2008).
    [CrossRef] [PubMed]
  23. Y. R. Shen, The principles of nonlinear optics (John Wiley, New York, 1984), Chap. 2.
  24. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
    [CrossRef] [PubMed]
  25. J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431(3), 87–172 (2006).
    [CrossRef]
  26. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and Metal colloids: the case of gold,” Appl. Phys. (Berl.) 47, 347–357 (1988).
  27. E. L. Falcão-Filho, C. B. de Araujo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24(12), 2948–2956 (2007).
    [CrossRef]
  28. E. L. Falcao-Filho and C. B. de Araujo, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22, 2444–2449 (2005).
    [CrossRef]
  29. K. Tanabe, “Field Enhancement around Metal Nanoparticles and Nanoshells: A systematic Investigation,” J. Phys. Chem. C 112(40), 15721–15728 (2008).
    [CrossRef]
  30. D. Stroud and P. M. Hui, “Nonlinear susceptibilities of granular matter,” Phys. Rev. B 37(15), 8719–8724 (1988).
    [CrossRef]
  31. D. Stroud, “The effective medium approximations: Some recent developments,” Superlattices Microstruct. 23(3-4), 567–573 (1998).
    [CrossRef]
  32. W. David, Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed., (Academic, Orlando, Fla., 1985).
  33. Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
    [CrossRef]

2009 (5)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

R. Driben, A. Husakou, and J. Herrmann, “Supercontinuum generation in aqueous colloids containing silver nanoparticles,” Opt. Lett. 34(14), 2132–2134 (2009).
[CrossRef] [PubMed]

D. C. Kohlgraf-Owens and P. G. Kik, “Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays,” Opt. Express 17(17), 15032–15042 (2009).
[CrossRef] [PubMed]

R. Driben, A. Husakou, and J. Herrmann, “Low-threshold supercontinuum generation in glasses doped with silver nanoparticles,” Opt. Express 17(20), 17989–17995 (2009).
[CrossRef] [PubMed]

2008 (5)

D. C. Kohlgraf-Owens and P. G. Kik, “Numerical study of surface plasmon enhanced nonlinear absorption and refraction,” Opt. Express 16(14), 10823–10834 (2008).
[CrossRef] [PubMed]

K. Tanabe, “Field Enhancement around Metal Nanoparticles and Nanoshells: A systematic Investigation,” J. Phys. Chem. C 112(40), 15721–15728 (2008).
[CrossRef]

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
[CrossRef]

M. Pelton, J. Aizpurua, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008).
[CrossRef]

S.-C. Kim, J.-H. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

2007 (2)

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[CrossRef] [PubMed]

E. L. Falcão-Filho, C. B. de Araujo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24(12), 2948–2956 (2007).
[CrossRef]

2006 (1)

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431(3), 87–172 (2006).
[CrossRef]

2005 (1)

2004 (2)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Linear and nonlinear optical response of silver nanoprisms: local electric fields of dipole and quadrupole plasmon resonances,” J. Phys. Chem. B 108(26), 8751–8755 (2004).
[CrossRef]

2003 (2)

F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quantum. Spectrosc. Radiat. Transf. 79–80, 775–824 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

1999 (1)

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999).
[CrossRef]

1998 (1)

D. Stroud, “The effective medium approximations: Some recent developments,” Superlattices Microstruct. 23(3-4), 567–573 (1998).
[CrossRef]

1997 (1)

S. M. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

1995 (1)

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103(3), 869–875 (1995).
[CrossRef]

1994 (1)

1992 (1)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

1991 (1)

1988 (3)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and Metal colloids: the case of gold,” Appl. Phys. (Berl.) 47, 347–357 (1988).

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

D. Stroud and P. M. Hui, “Nonlinear susceptibilities of granular matter,” Phys. Rev. B 37(15), 8719–8724 (1988).
[CrossRef]

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008).
[CrossRef]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Boyd, R. W.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008).
[CrossRef]

Chen, Y.-H.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

de Araujo, C. B.

Draine, B. T.

Driben, R.

Elsaesser, T.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[CrossRef] [PubMed]

Emory, S. R.

S. M. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Falcao-Filho, E. L.

Falcão-Filho, E. L.

Flatau, P. J.

Flytzanis, C.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and Metal colloids: the case of gold,” Appl. Phys. (Berl.) 47, 347–357 (1988).

Goodman, J. J.

Hache, F.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and Metal colloids: the case of gold,” Appl. Phys. (Berl.) 47, 347–357 (1988).

Hamanaka, Y.

N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Linear and nonlinear optical response of silver nanoprisms: local electric fields of dipole and quadrupole plasmon resonances,” J. Phys. Chem. B 108(26), 8751–8755 (2004).
[CrossRef]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

Herrmann, J.

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Huang, J. P.

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431(3), 87–172 (2006).
[CrossRef]

Hui, P. M.

D. Stroud and P. M. Hui, “Nonlinear susceptibilities of granular matter,” Phys. Rev. B 37(15), 8719–8724 (1988).
[CrossRef]

Husakou, A.

Jensen, T.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999).
[CrossRef]

Jin, J.-H.

S.-C. Kim, J.-H. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Jones, T. G.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

Kahnert, F. M.

F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quantum. Spectrosc. Radiat. Transf. 79–80, 775–824 (2003).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kelly, L.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999).
[CrossRef]

Kik, P. G.

Kim, S.-C.

S.-C. Kim, J.-H. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, S.-W.

S.-C. Kim, J.-H. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S.-C. Kim, J.-H. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.-J.

S.-C. Kim, J.-H. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kohlgraf-Owens, D. C.

Kreibig, U.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and Metal colloids: the case of gold,” Appl. Phys. (Berl.) 47, 347–357 (1988).

Lazarides, A.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999).
[CrossRef]

Lienau, C.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[CrossRef] [PubMed]

Liz-Marzan, L. M.

N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Linear and nonlinear optical response of silver nanoprisms: local electric fields of dipole and quadrupole plasmon resonances,” J. Phys. Chem. B 108(26), 8751–8755 (2004).
[CrossRef]

Milchberg, H. M.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

Nakamura, A.

N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Linear and nonlinear optical response of silver nanoprisms: local electric fields of dipole and quadrupole plasmon resonances,” J. Phys. Chem. B 108(26), 8751–8755 (2004).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Nie, S. M.

S. M. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Noguez, C.

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
[CrossRef]

Okada, N.

N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Linear and nonlinear optical response of silver nanoprisms: local electric fields of dipole and quadrupole plasmon resonances,” J. Phys. Chem. B 108(26), 8751–8755 (2004).
[CrossRef]

Park, I.-Y.

S.-C. Kim, J.-H. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Linear and nonlinear optical response of silver nanoprisms: local electric fields of dipole and quadrupole plasmon resonances,” J. Phys. Chem. B 108(26), 8751–8755 (2004).
[CrossRef]

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008).
[CrossRef]

Ricard, D.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and Metal colloids: the case of gold,” Appl. Phys. (Berl.) 47, 347–357 (1988).

Rodrigues, J. J.

Ropers, C.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[CrossRef] [PubMed]

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999).
[CrossRef]

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103(3), 869–875 (1995).
[CrossRef]

Schulz, C. P.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[CrossRef] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Sipe, J. E.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

Solli, D. R.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[CrossRef] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Stroud, D.

D. Stroud, “The effective medium approximations: Some recent developments,” Superlattices Microstruct. 23(3-4), 567–573 (1998).
[CrossRef]

D. Stroud and P. M. Hui, “Nonlinear susceptibilities of granular matter,” Phys. Rev. B 37(15), 8719–8724 (1988).
[CrossRef]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Tanabe, K.

K. Tanabe, “Field Enhancement around Metal Nanoparticles and Nanoshells: A systematic Investigation,” J. Phys. Chem. C 112(40), 15721–15728 (2008).
[CrossRef]

Ting, A.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

Van Duyne, R. P.

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103(3), 869–875 (1995).
[CrossRef]

Varma, S.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Wilkes, Z. W.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

Yang, W.-H.

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103(3), 869–875 (1995).
[CrossRef]

Yu, K. W.

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431(3), 87–172 (2006).
[CrossRef]

Zhang, J. Z.

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Appl. Phys. (Berl.) (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and Metal colloids: the case of gold,” Appl. Phys. (Berl.) 47, 347–357 (1988).

Appl. Phys. Lett. (1)

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94(21), 211102 (2009).
[CrossRef]

Astrophys. J. (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

J. Chem. Phys. (2)

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys. 103(3), 869–875 (1995).
[CrossRef]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

J. Cluster Sci. (1)

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Linear and nonlinear optical response of silver nanoprisms: local electric fields of dipole and quadrupole plasmon resonances,” J. Phys. Chem. B 108(26), 8751–8755 (2004).
[CrossRef]

J. Phys. Chem. C (1)

K. Tanabe, “Field Enhancement around Metal Nanoparticles and Nanoshells: A systematic Investigation,” J. Phys. Chem. C 112(40), 15721–15728 (2008).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quantum. Spectrosc. Radiat. Transf. 79–80, 775–824 (2003).
[CrossRef]

Laser Photon. Rev. (1)

M. Pelton, J. Aizpurua, and G. Bryant, “Metal nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008).
[CrossRef]

Nature (2)

S.-C. Kim, J.-H. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rep. (1)

J. P. Huang and K. W. Yu, “Enhanced nonlinear optical responses of materials: composite effects,” Phys. Rep. 431(3), 87–172 (2006).
[CrossRef]

Phys. Rev. A (1)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

Phys. Rev. B (1)

D. Stroud and P. M. Hui, “Nonlinear susceptibilities of granular matter,” Phys. Rev. B 37(15), 8719–8724 (1988).
[CrossRef]

Phys. Rev. Lett. (1)

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[CrossRef] [PubMed]

Plasmonics (1)

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
[CrossRef]

Science (1)

S. M. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Superlattices Microstruct. (1)

D. Stroud, “The effective medium approximations: Some recent developments,” Superlattices Microstruct. 23(3-4), 567–573 (1998).
[CrossRef]

Other (5)

W. David, Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed., (Academic, Orlando, Fla., 1985).

Y. R. Shen, The principles of nonlinear optics (John Wiley, New York, 1984), Chap. 2.

S. A. Maier, Plasmonics: Fundamentals and applications (Springer Verlag, Berlin, 2007).

M. A. Yurkin, and A. G. Hoestra, “The discrete dipole approximation: an overview and recent developments,” http://arxiv.org/ftp /arxiv/papers/0704/0704.0038.pdf .

H. C. van de Hulst, Light Scattering by Small Particles (John Wiley, New York, 1957), Chapters 9 and 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dependence of the effective linear optical parameters of aqueous colloid containing silver nanospheres on the particle size. In (a) the extinction efficiency Q ext , in (b) the absorption efficiency Q abs , in (c) the real and in (d) the imaginary part of effective permittivity ε are presented. The results of the generalized Maxwell-Garnett model (GMG) are presented by the red curve and numerical results are presented for NP diameters 10 nm (blue), 40 nm (green) and 70 nm (black). The filling factor is 3×10-4.

Fig. 2
Fig. 2

Dependence of the real (a) and imaginary (b) part of the nonlinear optical susceptibility of aqueous colloid containing silver nanospheres on the particle size. The results of the generalized Maxwell-Garnett model (GMG) are presented by the red curve and numerical results are presented for NP diameters 10 nm (blue), 40 nm (green) and 70 nm (black). The other parameters are the same as in Fig. 1.

Fig. 3
Fig. 3

Effective nonlinear optical susceptibility of CS2 colloid containing silver nanospheres with various diameters with a filling factor of 3×10-5.

Fig. 5
Fig. 5

Linear and nonlinear optical parameters of fused silica doped with silver nanoparticles with different shapes, as nanospheres (a)-(c), nanorods (d)-(f) and nanotriangles (g)-(i). The diameters and side lengths are all the same and as much as 30 nm, the length of the nanorods is 40 nm, the thickness of the nanotriangles is 15 nm and the filling factor is 10-4. All the quantities are averaged for all the possible polarization directions versus the orientations of nanoparticles in space.

Fig. 4
Fig. 4

Field distribution near silver nanotriangles with side length and thickness of 45 nm and 15 nm, respectively, in a silica composite The polarization of the incident field as shown in the inset is parallel to one side of the nanotriangle (a),(b) and in the direction of its bisector (c),(d).

Fig. 6
Fig. 6

Dielectric function and nonlinear optical susceptibilities of fused silica doped with silver nanorods for different polarization of the incident light. The black curves represent the result for in-plane polarization (polarization is perpendicular to the axis of nanorod), the green curves refer to out-of-plane polarization (polarization is parallel to the axis), and the red curves are direction averaged quantities. The parameters are the same as in Fig. 5(d)5(f).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α j = 3 v j 4 π ε j ε h ε j + 2 ε h ,
E j = E j i n c k = 1 , j k N A ^ j k α k E k ,
A ^ j k = exp ( i β r j k ) r j k 3 [ β 2 ( r j k . r j k I ^ ) + i β r j k 1 r j k 2 ( 3 r j k . r j k I ^ ) ] ,
C ext = 4 π k | E 0 | 2 j = 1 N Im ( E j i n c * d j ) ,
C abs = 4 π k | E 0 | 2 j = 1 N { Im [ d j ( α j 1 ) * d j * ] 2 3 k 3 | d j | 2 } ,

Metrics