Abstract

A novel prism-chamber assembly was prepared for application in optical waveguide based chemical and biological sensors, making the sensor easily and reproducibly operate. By using the prism-chamber assembly, the performance of a composite waveguide based integrated Young interferometer sensor was investigated. The temporal interference pattern detected with a single-slit photodetector heavily relies on the slit width, and regular high-contrast patterns can be obtained under the condition that the slit width is smaller than the spatial periodicity of the sensor. Increasing the temperature of water in the chamber leads to a quasi-linear variation in the phase difference with Δϕ/ΔT ≈−9.1°/°C. Significant dependence of the sensor’s sensitivity on the polarization state of the guided mode was also observed. The sensor is stable and reliable, capable of real-time detection of very slow bioreactions at the interface.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sens. Actuators B Chem. 75(1-2), 76–82 (2001).
    [CrossRef]
  2. S. Ricard-Blum, L. L. Peel, F. Ruggiero, and N. J. Freeman, “Dual polarization interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352(2), 252–259 (2006).
    [CrossRef] [PubMed]
  3. P. D. Coffey, M. J. Swann, T. A. Waigh, F. Schedin, and J. R. Lu, “Multiple path length dual polarization interferometry,” Opt. Express 17(13), 10959–10969 (2009).
    [CrossRef] [PubMed]
  4. G. H. Cross, Y. Ren, and N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: Applications to humidity sensing,” J. Appl. Phys. 86(11), 6483–6488 (1999).
    [CrossRef]
  5. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
    [CrossRef]
  6. D. Hradetzky, C. Mueller, and H. Reinecke, “Interferometric label-free biomolecular detection system,” J. Opt. A, Pure Appl. Opt. 8(7), S360–S364 (2006).
    [CrossRef]
  7. E. Brynda, M. Houska, A. Brandenburg, and A. Wikerstål, “Optical biosensors for real-time measurement of analytes in blood plasma,” Biosens. Bioelectron. 17(8), 665–675 (2002).
    [CrossRef] [PubMed]
  8. A. Brandenburg and R. Henninger, “Integrated optical Young interferometer,” Appl. Opt. 33(25), 5941–5947 (1994).
    [CrossRef] [PubMed]
  9. A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42(28), 5649–5660 (2003).
    [CrossRef] [PubMed]
  10. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
    [CrossRef] [PubMed]
  11. Z. Qi, S. Zhao, F. Chen, and S. Xia, “Integrated Young interferometer sensor with a channel-planar composite waveguide sensing arm,” Opt. Lett. 34(14), 2213–2215 (2009).
    [CrossRef] [PubMed]
  12. Z. Qi, N. Matsuda, K. Itoh, and D. Qing, “Characterization of an optical waveguide with a composite structure,” J. Lightwave Technol. 20(8), 1598–1603 (2002).
    [CrossRef]

2009 (2)

2007 (2)

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef]

2006 (2)

D. Hradetzky, C. Mueller, and H. Reinecke, “Interferometric label-free biomolecular detection system,” J. Opt. A, Pure Appl. Opt. 8(7), S360–S364 (2006).
[CrossRef]

S. Ricard-Blum, L. L. Peel, F. Ruggiero, and N. J. Freeman, “Dual polarization interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352(2), 252–259 (2006).
[CrossRef] [PubMed]

2003 (1)

2002 (2)

Z. Qi, N. Matsuda, K. Itoh, and D. Qing, “Characterization of an optical waveguide with a composite structure,” J. Lightwave Technol. 20(8), 1598–1603 (2002).
[CrossRef]

E. Brynda, M. Houska, A. Brandenburg, and A. Wikerstål, “Optical biosensors for real-time measurement of analytes in blood plasma,” Biosens. Bioelectron. 17(8), 665–675 (2002).
[CrossRef] [PubMed]

2001 (1)

Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sens. Actuators B Chem. 75(1-2), 76–82 (2001).
[CrossRef]

1999 (1)

G. H. Cross, Y. Ren, and N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: Applications to humidity sensing,” J. Appl. Phys. 86(11), 6483–6488 (1999).
[CrossRef]

1994 (1)

Beumer, T. A.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Brandenburg, A.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef]

E. Brynda, M. Houska, A. Brandenburg, and A. Wikerstål, “Optical biosensors for real-time measurement of analytes in blood plasma,” Biosens. Bioelectron. 17(8), 665–675 (2002).
[CrossRef] [PubMed]

A. Brandenburg and R. Henninger, “Integrated optical Young interferometer,” Appl. Opt. 33(25), 5941–5947 (1994).
[CrossRef] [PubMed]

Brynda, E.

E. Brynda, M. Houska, A. Brandenburg, and A. Wikerstål, “Optical biosensors for real-time measurement of analytes in blood plasma,” Biosens. Bioelectron. 17(8), 665–675 (2002).
[CrossRef] [PubMed]

Chen, F.

Coffey, P. D.

Cross, G. H.

Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sens. Actuators B Chem. 75(1-2), 76–82 (2001).
[CrossRef]

G. H. Cross, Y. Ren, and N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: Applications to humidity sensing,” J. Appl. Phys. 86(11), 6483–6488 (1999).
[CrossRef]

Freeman, N. J.

S. Ricard-Blum, L. L. Peel, F. Ruggiero, and N. J. Freeman, “Dual polarization interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352(2), 252–259 (2006).
[CrossRef] [PubMed]

G. H. Cross, Y. Ren, and N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: Applications to humidity sensing,” J. Appl. Phys. 86(11), 6483–6488 (1999).
[CrossRef]

Greve, J.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42(28), 5649–5660 (2003).
[CrossRef] [PubMed]

Heideman, R. G.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42(28), 5649–5660 (2003).
[CrossRef] [PubMed]

Henninger, R.

Hoffmann, C.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef]

Houska, M.

E. Brynda, M. Houska, A. Brandenburg, and A. Wikerstål, “Optical biosensors for real-time measurement of analytes in blood plasma,” Biosens. Bioelectron. 17(8), 665–675 (2002).
[CrossRef] [PubMed]

Hradetzky, D.

D. Hradetzky, C. Mueller, and H. Reinecke, “Interferometric label-free biomolecular detection system,” J. Opt. A, Pure Appl. Opt. 8(7), S360–S364 (2006).
[CrossRef]

Itoh, K.

Kanger, J. S.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42(28), 5649–5660 (2003).
[CrossRef] [PubMed]

Lambeck, P. V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42(28), 5649–5660 (2003).
[CrossRef] [PubMed]

Lu, J. R.

Matsuda, N.

Meyrueis, P.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef]

Mormile, P.

Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sens. Actuators B Chem. 75(1-2), 76–82 (2001).
[CrossRef]

Mueller, C.

D. Hradetzky, C. Mueller, and H. Reinecke, “Interferometric label-free biomolecular detection system,” J. Opt. A, Pure Appl. Opt. 8(7), S360–S364 (2006).
[CrossRef]

Peel, L. L.

S. Ricard-Blum, L. L. Peel, F. Ruggiero, and N. J. Freeman, “Dual polarization interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352(2), 252–259 (2006).
[CrossRef] [PubMed]

Petti, L.

Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sens. Actuators B Chem. 75(1-2), 76–82 (2001).
[CrossRef]

Qi, Z.

Qing, D.

Reinecke, H.

D. Hradetzky, C. Mueller, and H. Reinecke, “Interferometric label-free biomolecular detection system,” J. Opt. A, Pure Appl. Opt. 8(7), S360–S364 (2006).
[CrossRef]

Ren, Y.

Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sens. Actuators B Chem. 75(1-2), 76–82 (2001).
[CrossRef]

G. H. Cross, Y. Ren, and N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: Applications to humidity sensing,” J. Appl. Phys. 86(11), 6483–6488 (1999).
[CrossRef]

Ricard-Blum, S.

S. Ricard-Blum, L. L. Peel, F. Ruggiero, and N. J. Freeman, “Dual polarization interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352(2), 252–259 (2006).
[CrossRef] [PubMed]

Ruggiero, F.

S. Ricard-Blum, L. L. Peel, F. Ruggiero, and N. J. Freeman, “Dual polarization interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352(2), 252–259 (2006).
[CrossRef] [PubMed]

Schedin, F.

Schirmer, B.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef]

Schmitt, K.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef]

Subramaniam, V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Swann, M. J.

van Hövell, S. W.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Waigh, T. A.

Wijn, R.

Wijn, R. R.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Wikerstål, A.

E. Brynda, M. Houska, A. Brandenburg, and A. Wikerstål, “Optical biosensors for real-time measurement of analytes in blood plasma,” Biosens. Bioelectron. 17(8), 665–675 (2002).
[CrossRef] [PubMed]

Wink, T.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Xia, S.

Ymeti, A.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42(28), 5649–5660 (2003).
[CrossRef] [PubMed]

Zhao, S.

Anal. Biochem. (1)

S. Ricard-Blum, L. L. Peel, F. Ruggiero, and N. J. Freeman, “Dual polarization interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352(2), 252–259 (2006).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biosens. Bioelectron. (2)

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007).
[CrossRef]

E. Brynda, M. Houska, A. Brandenburg, and A. Wikerstål, “Optical biosensors for real-time measurement of analytes in blood plasma,” Biosens. Bioelectron. 17(8), 665–675 (2002).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

G. H. Cross, Y. Ren, and N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: Applications to humidity sensing,” J. Appl. Phys. 86(11), 6483–6488 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

D. Hradetzky, C. Mueller, and H. Reinecke, “Interferometric label-free biomolecular detection system,” J. Opt. A, Pure Appl. Opt. 8(7), S360–S364 (2006).
[CrossRef]

Nano Lett. (1)

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Sens. Actuators B Chem. (1)

Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sens. Actuators B Chem. 75(1-2), 76–82 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Photograph of the glass chip with 5 pairs of single-mode channel waveguides; (b) Optical microscope image of the channel waveguide pair; (c) Near-field modal profile at λ = 532 nm of a single channel; (d) the far-field interference profile produced from the channel waveguide pair with the prism-coupling method; (e) Young interference pattern simulated with the parameters of the actual sensor (the blue curve is the diffracted light intensity profile for a single channel).

Fig. 2
Fig. 2

(a) the front view of the prism-chamber assembly in the close state; (b) the side view in the open state; (c) Photograph of an actual prism-chamber assembly (1. back board, 2. waveguide chip, 3. prism coupler, 4. prism holder, 5. springs, 6. front board, 7. slide screws, 8. fluid chamber, 9. inlet and outlet, 10. locking screw, 11. strut, 12, rotation axis, 13. silicone gasket, 14. temperature sensor)

Fig. 3
Fig. 3

(a)-(d) Temporal interference patterns of the sensor measured with the prism-chamber assembly and the slit detector of different slit widths [(a) 0.2 mm, (b) 0.5 mm, (c) 1 mm, (d) 1.5 mm], (e) the fringe contrast versus the slit width (blue curve: the calculated data; red squares: the experimental data).

Fig. 4
Fig. 4

(a) Time variation of the water temperature and the response of the IO Young interferometer to water temperature; (b) Δϕ, Δϕ/ and Δϕ − Δϕ/ versus water temperature (Δϕ is the measured phase-difference change, Δϕ/ is that calculated due to the thermo-optical effect of water.)

Fig. 5
Fig. 5

(a) Response to β-casein adsorption of the IO Young interferometer with the TE mode (b) Response to refractive index of liquid of the same sensor with the TM mode.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ = λ D π d a | sin ( π d a λ D ) | = | sin c ( π d a λ D ) |

Metrics