Abstract

We report results of parallel optical nanolithography using nanoscale bowtie aperture array. These nanoscale bowtie aperture arrays are used to focus a laser beam into multiple nanoscale light spots for parallel nano-lithography. Our work employed a frequency-tripled diode-pumped solid state (DPSS) laser (λ = 355 nm) and Shipley S1805 photoresist. An interference-based optical alignment system was employed to position the bowtie aperture arrays with the photoresist surface. Nanoscale direct-writing of sub-100nm features in photoresist in parallel is demonstrated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
    [CrossRef]
  2. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
    [CrossRef]
  3. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
    [CrossRef] [PubMed]
  4. X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
    [CrossRef]
  5. K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
    [CrossRef]
  6. E. X. Jin and X. Xu, “Finite difference time domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
    [CrossRef]
  7. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
    [CrossRef]
  8. L. Wang, S. M. V. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
    [CrossRef] [PubMed]
  9. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
    [CrossRef] [PubMed]
  10. Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, “Plasmonic nano lithography with a high scan speed contact probe,” Opt. Express 17(22), 19476–19485 (2009).
    [CrossRef] [PubMed]
  11. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
    [CrossRef] [PubMed]
  12. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nano-aperture,” Appl. Phys. Lett. 86(11), 111106–111108 (2005).
    [CrossRef]
  13. Solvay Solexis Inc, “Fomblin Lubes – PFPE lubricants”, http://www.solvaysolexis.com/static/wma/pdf/1/4/9/7/3/BR%20FOMB%20Lubes%20LD.pdf .
  14. Remcom Inc., FDTD Commercial Software Package, Version XFDTD 6.3.
  15. H. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46(12), 2229–2233 (2007).
    [CrossRef] [PubMed]
  16. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
    [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  18. M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
    [CrossRef]

2009

2008

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
[CrossRef] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

2007

2006

L. Wang, S. M. V. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

2005

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nano-aperture,” Appl. Phys. Lett. 86(11), 111106–111108 (2005).
[CrossRef]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

2004

S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
[CrossRef]

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[CrossRef]

E. X. Jin and X. Xu, “Finite difference time domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

2003

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

2002

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

2000

M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
[CrossRef]

1999

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[CrossRef]

1974

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

Akhremitchev, B. B.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

Alkaisi, M. M.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[CrossRef]

Bain, J. A.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

Binnig, G.

M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
[CrossRef]

Blaikie, R. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[CrossRef]

Bogy, D. B.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Brugger, J.

M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
[CrossRef]

Challener, W.

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[CrossRef]

Chen, F.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

Cheung, R.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

Cumming, D. R. S.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[CrossRef]

Despont, M.

M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
[CrossRef]

Drechsler, U.

M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
[CrossRef]

Dürig, U.

M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
[CrossRef]

Gai, H.

Häberle, W.

M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
[CrossRef]

Hahn, J. W.

Hesselink, L.

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Itagi, A.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

Jin, E. X.

L. Wang, S. M. V. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nano-aperture,” Appl. Phys. Lett. 86(11), 111106–111108 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Finite difference time domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

Jung, H.

Kim, S.

Kim, Y.

Kinzel, E. C.

Lee, E.

Leggett, G. J.

S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
[CrossRef]

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

Lutwyche, M.

M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
[CrossRef]

McNab, S. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[CrossRef]

Murphy-DuBay, N.

Pan, L.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Peng, C.

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[CrossRef]

Rohrer, H.

M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
[CrossRef]

Rothuizen, H.

M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
[CrossRef]

Schlesinger, T. E.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

Sendur, K.

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[CrossRef]

Shi, X.

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Stancil, D. D.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

Stebounova, L.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

Stutz, R.

M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
[CrossRef]

Sun, C.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Sun, S.

S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
[CrossRef]

Tian, Q.

Uppuluri, S. M. V.

Vettiger, P.

M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
[CrossRef]

Walker, G. C.

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

Wang, J.

Wang, L.

Wang, Y.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

Widmer, R.

M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
[CrossRef]

Xu, X.

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
[CrossRef] [PubMed]

L. Wang, S. M. V. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nano-aperture,” Appl. Phys. Lett. 86(11), 111106–111108 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Finite difference time domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

Zhang, X.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nano-aperture,” Appl. Phys. Lett. 86(11), 111106–111108 (2005).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[CrossRef]

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003).
[CrossRef]

J. Appl. Phys.

K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

E. X. Jin and X. Xu, “Finite difference time domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Nano Lett.

S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
[CrossRef]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

L. Wang, S. M. V. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

Nat. Nanotechnol.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

Sens. Actuators

M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Solvay Solexis Inc, “Fomblin Lubes – PFPE lubricants”, http://www.solvaysolexis.com/static/wma/pdf/1/4/9/7/3/BR%20FOMB%20Lubes%20LD.pdf .

Remcom Inc., FDTD Commercial Software Package, Version XFDTD 6.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Bowtie-shaped ridge aperture.

Fig. 2
Fig. 2

Schematic of experiment setup.

Fig. 3
Fig. 3

(a) Electric field distributions in the E and H planes for Aluminum bowtie aperture, (b) Electric field distributions in the E and H planes for Chromium bowtie aperture.

Fig. 4
Fig. 4

Ultra-smooth chromium film prepared by the thermal PVD process. (a) SEM image, (b) AFM topography image.

Fig. 5
Fig. 5

Interference fringes for varying degrees of tilt between the mask and photoresistsurfaces. (a) Measured, (b) MATLAB simulations.

Fig. 6
Fig. 6

Lines generated at different speeds – 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9µm/s. (a) width of the lines, (b) depth of the lines, (c) XFDTD prediction of line widths, (d) AFM image of line width ~90 nm, (e) AFM image of smallest line width of about 60 nm.

Fig. 7
Fig. 7

Parallel writing using a 2 × 2 array of Bowtie apertures. (a) SEM image of the mask, (b) AFM image of patterns produced in the photoresist.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε ˜ = ε + ε s ε 1 + j ω τ + σ j ω ε 0 .

Metrics