Abstract

A lidar technique employing temporally stretched, frequency chirped pulses from a 20 MHz mode locked laser is presented. Sub-millimeter resolution at a target range of 10.1 km (in fiber) is observed. A pulse tagging scheme based on phase modulation is demonstrated for range resolved measurements. A carrier to noise ratio of 30 dB is observed at an unambiguous target distance of 30 meters in fiber.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Fujii, and T. Fukuchi, Laser Remote Sensing (Boca Raton, Taylor & Francis, 2005).
  2. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [CrossRef]
  3. H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009).
    [CrossRef] [PubMed]
  4. B. W. Schilling, D. N. Barr, G. C. Templeton, L. J. Mizerka, and C. W. Trussell, “Multiple-return laser radar for three-dimensional imaging through obscurations,” Appl. Opt. 41(15), 2791–2799 (2002).
    [CrossRef] [PubMed]
  5. M.-C. Amann, T. Bosch, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
    [CrossRef]
  6. R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
    [CrossRef]
  7. X. Sun, J. B. Abshire, M. A. Krainak, and W. B. Hasselbrack, “Photon counting pseudorandom noise code laser altimeters, “Proc. SPIE 6771, 677100.1 – 677100.9 (2007).
  8. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
    [CrossRef] [PubMed]
  9. C. J. Karlsson, F. A. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39(21), 3716–3726 (2000).
    [CrossRef]
  10. R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–37 (2001).
    [CrossRef]
  11. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44(35), 7621–7629 (2005).
    [CrossRef] [PubMed]
  12. M. J. Halmos, “Synthetic aperture ladar with chirped modelocked waveform, “US Patent 7505488, (2009).
  13. K. W. Holman, D. G. Kocher, and S. Kaushik, “MIT/LL development of broadband linear frequency chirp for high-resolution ladar,” Proc. SPIE 6572, 65720J.1 – 65720J.8 (2007).
  14. S. Lee, D. Mandridis, and P. J. Delfyett., “eXtreme chirped pulse oscillator operating in the nanosecond stretched pulse regime,” Opt. Express 16(7), 4766–4773 (2008).
    [CrossRef] [PubMed]

2009

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

2008

2006

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
[CrossRef]

2005

2002

2001

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–37 (2001).
[CrossRef]

M.-C. Amann, T. Bosch, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
[CrossRef]

2000

Agishev, R.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
[CrossRef]

Ahmed, S.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
[CrossRef]

Amann, M.-C.

M.-C. Amann, T. Bosch, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
[CrossRef]

Araki, H.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Barr, D. N.

Beck, S. M.

Bosch, T.

M.-C. Amann, T. Bosch, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
[CrossRef]

Buck, J. R.

Buell, W. F.

Buller, G. S.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Delfyett, P. J.

Dickinson, R. P.

Gilerson, A.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
[CrossRef]

Goossens, S.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Gross, B.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
[CrossRef]

Harris, M.

Hiskett, P. A.

Ishihara, Y.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Kamiya, I.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Karlsson, C. J.

Kawano, N.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Kozlowski, D. A.

Lee, S.

Letalick, D.

Mandridis, D.

Marechal, N. J.

McCarthy, A.

Mizerka, L. J.

Moshary, F.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
[CrossRef]

Myllylä, R.

M.-C. Amann, T. Bosch, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
[CrossRef]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Noda, H.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Oberst, J.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Olsson, F. A. A.

Otake, H.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Parry, C. S.

Rioux, M.

M.-C. Amann, T. Bosch, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
[CrossRef]

Sasaki, S.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Schilling, B. W.

Schneider, R.

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–37 (2001).
[CrossRef]

Shum, C.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Stockmann, M.

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–37 (2001).
[CrossRef]

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Tazawa, S.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Templeton, G. C.

Thurmel, P.

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–37 (2001).
[CrossRef]

Trussell, C. W.

Wright, T. J.

Appl. Opt.

Appl. Phys. B

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
[CrossRef]

Nat. Photonics

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Opt. Eng.

M.-C. Amann, T. Bosch, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
[CrossRef]

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–37 (2001).
[CrossRef]

Opt. Express

Science

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Other

T. Fujii, and T. Fukuchi, Laser Remote Sensing (Boca Raton, Taylor & Francis, 2005).

M. J. Halmos, “Synthetic aperture ladar with chirped modelocked waveform, “US Patent 7505488, (2009).

K. W. Holman, D. G. Kocher, and S. Kaushik, “MIT/LL development of broadband linear frequency chirp for high-resolution ladar,” Proc. SPIE 6572, 65720J.1 – 65720J.8 (2007).

X. Sun, J. B. Abshire, M. A. Krainak, and W. B. Hasselbrack, “Photon counting pseudorandom noise code laser altimeters, “Proc. SPIE 6771, 677100.1 – 677100.9 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The interference of a two identical, linearly chirped pulses generates a beat signal that depends on the relative distance between the overlapping pulses.

Fig. 2
Fig. 2

Temporally stretched, frequency chirped lidar schematic. PC, Polarization Controller; CFBG, Chirped Fiber Bragg Grating; CIRC, Circulator; FL, Fiber Launcher; VOD, Variable Optical Delay; EDFA, Erbium Doped Fiber Amplifier; RFSA, RF Spectrum Analyzer.

Fig. 3
Fig. 3

a) Detected coherent heterodyned signals at different target distances b) Shift in the peak of the beat frequency as a function of target distance. Inset shows the GDR of the CFBG

Fig. 4
Fig. 4

a) Observed beat signal with a −3 dB width of ~200 MHz b) Shift in the peak of the beat frequency as a function of target distance.

Fig. 5
Fig. 5

Conceptual schematic of range resolved lidar operation.

Fig. 6
Fig. 6

a) Heterodyne schematic for frequency swept RF signal generation. PC, Polarization Controller; PD, Photodetector b) Beat signal generated from heterodyne setup.

Fig. 7
Fig. 7

Range Resolved Lidar Schematic. PM, Phase Modulator. PC, Polarization Controller; CFBG, Chirped Fiber Bragg Grating; CIRC, Circulator; VOD, Variable Optical Delay; EDFA, Erbium Doped Fiber Amplifier; RFSA, RF Spectrum Analyzer.

Fig. 8
Fig. 8

Phase modulation sidebands at 1 GHz from the main tone.

Metrics