Abstract

We demonstrate simultaneous self-phase-modulation-based 2R regeneration of 2 × 10.65-Gb/s polarization-division-multiplexed (PDM) signals using a single section of highly nonlinear fiber (HNLF). Mitigation of inter-channel nonlinearities is achieved through a bidirectional configuration, rejecting of backward Stimulated Brillouin Scattering noise is obtained by signal re-polarizing before the offset filter and putting the center wavelength of filter at the short wavelength side of the signal. The power penalty improvement up to 2.0 dB for two PDM signals at 10−9 BER is achieved.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” 1998 European Conference on Optical Communications, 475 (1998).
  2. M. Jinno and M. Abe, “All-optical regenerator based on nonlinear fiber Sagnac interferometer,” Electron. Lett. 28(14), 1350–1352 (1992).
    [CrossRef]
  3. Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” IEEE Photon. Technol. Lett. 15(2), 350–352 (2003).
    [CrossRef]
  4. N. Yoshikane, I. Morita, and N. Edagawa, “Improvement of dispersion tolerance by SPM-based all-optical reshaping in receiver,” IEEE Photon. Technol. Lett. 15(1), 111–113 (2003).
    [CrossRef]
  5. K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express 14(6), 2085–2094 (2006).
    [CrossRef] [PubMed]
  6. M. Matsuura and N. Kishi, “Wideband wavelength-flexible all-optical signal regeneration using gain-band tunable Raman amplification and self-phase-modulation-based spectral filtering,” Opt. Lett. 34(16), 2420–2422 (2009).
    [CrossRef] [PubMed]
  7. M. Matsumoto and O. Leclerc, “Analysis of 2R optical regenerator utilizing self-phase-modulation in highly nonlinear fiber,” Electron. Lett. 38(12), 576–577 (2002).
    [CrossRef]
  8. T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16(1), 200–202 (2004).
    [CrossRef]
  9. A. G. Striegler and B. Schmauss, “Analysis and optimization of SPM-based 2R signal regeneration at 40 gb/s,” J. Lightwave Technol. 24(7), 2835–2843 (2006).
    [CrossRef]
  10. L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008).
    [CrossRef] [PubMed]
  11. L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Investigation of simultaneous 2R regeneration of two 40-Gb/s channels in a single optical fiber,” IEEE Photon. Technol. Lett. 20(4), 270–272 (2008).
    [CrossRef]
  12. C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
    [CrossRef]
  13. N. S. M. Shah and M. Matsumoto, “2R regeneration of time-interleaved multiwavelength signals based on higher order four-wave mixing in a fiber,” IEEE Photon. Technol. Lett. 22(1), 27–29 (2010).
    [CrossRef]
  14. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output performance investigation of self-phase-modulation-based 2R regenerator using bismuth oxide nonlinear fiber,” IEEE Photon. Technol. Lett. 18(12), 1296–1298 (2006).
    [CrossRef]
  15. M. Matsumoto, “Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration,” Opt. Express 14(23), 11018–11023 (2006).
    [CrossRef] [PubMed]
  16. L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
    [CrossRef] [PubMed]
  17. F. Parmigiani, P. Vorreau, L. Provost, K. Mukasa, P. Petropoulos, D. J. Richardson, W. Freude, and J. Leuthold, “2R Regeneration of two 130 Gbit/s Channels within a Single Fiber,” in Proceedings OFC 2009, paper JThA56, (2009).
  18. M. Vasilyev and T. I. Lakoba, “All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett. 30(12), 1458–1460 (2005).
    [CrossRef] [PubMed]
  19. M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett. 13(8), 881–883 (2001).
    [CrossRef]
  20. J. Yu, M.-F. Huang, and G.-K. Chang, “Polarization insensitive wavelength conversion for 4x112Gbit/s polarization multiplexing RZ-QPSK signals,” Opt. Express 16(26), 21161–21169 (2008).
    [CrossRef] [PubMed]
  21. P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, and V. Degiorgio, “All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal,” Opt. Express 17(20), 17758–17763 (2009).
    [CrossRef] [PubMed]
  22. J. Lu, L. Chen, Z. Dong, Z. Cao, and S. Wen, “Polarization insensitive wavelength conversion based on orthogonal pump four-wave mixing for polarization multiplexing signal in high-nonlinear fiber,” J. Lightwave Technol. 27(24), 5767–5774 (2009).
    [CrossRef]
  23. M. O. van Deventer and A. J. Boot, “Polarization properties of Stimulated Brillouin Scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
    [CrossRef]
  24. M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” J. Lightwave Technol. 24(11), 4172–4183 (2006).
    [CrossRef]
  25. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26(1), 79–84 (2008).
    [CrossRef]
  26. M. Matsumoto and Y. Morioka, “Fiber-based all-optical regeneration of DPSK signals degraded by transmission in a fiber,” Opt. Express 17(8), 6913–6919 (2009).
    [CrossRef] [PubMed]

2010 (1)

N. S. M. Shah and M. Matsumoto, “2R regeneration of time-interleaved multiwavelength signals based on higher order four-wave mixing in a fiber,” IEEE Photon. Technol. Lett. 22(1), 27–29 (2010).
[CrossRef]

2009 (4)

2008 (5)

2007 (1)

2006 (5)

2005 (1)

2004 (1)

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16(1), 200–202 (2004).
[CrossRef]

2003 (2)

Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” IEEE Photon. Technol. Lett. 15(2), 350–352 (2003).
[CrossRef]

N. Yoshikane, I. Morita, and N. Edagawa, “Improvement of dispersion tolerance by SPM-based all-optical reshaping in receiver,” IEEE Photon. Technol. Lett. 15(1), 111–113 (2003).
[CrossRef]

2002 (1)

M. Matsumoto and O. Leclerc, “Analysis of 2R optical regenerator utilizing self-phase-modulation in highly nonlinear fiber,” Electron. Lett. 38(12), 576–577 (2002).
[CrossRef]

2001 (1)

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett. 13(8), 881–883 (2001).
[CrossRef]

1994 (1)

M. O. van Deventer and A. J. Boot, “Polarization properties of Stimulated Brillouin Scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

1992 (1)

M. Jinno and M. Abe, “All-optical regenerator based on nonlinear fiber Sagnac interferometer,” Electron. Lett. 28(14), 1350–1352 (1992).
[CrossRef]

Abe, M.

M. Jinno and M. Abe, “All-optical regenerator based on nonlinear fiber Sagnac interferometer,” Electron. Lett. 28(14), 1350–1352 (1992).
[CrossRef]

Boffi, P.

Boot, A. J.

M. O. van Deventer and A. J. Boot, “Polarization properties of Stimulated Brillouin Scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

Burrows, E. C.

Cao, Z.

Cardakli, M. C.

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett. 13(8), 881–883 (2001).
[CrossRef]

Centanni, J. C.

Chang, G.-K.

Charlet, G.

Chen, L.

Cristiani, I.

Croussore, K.

Degiorgio, V.

Doerr, C. R.

Dong, Z.

Edagawa, N.

N. Yoshikane, I. Morita, and N. Edagawa, “Improvement of dispersion tolerance by SPM-based all-optical reshaping in receiver,” IEEE Photon. Technol. Lett. 15(1), 111–113 (2003).
[CrossRef]

Essiambre, R. J.

Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” IEEE Photon. Technol. Lett. 15(2), 350–352 (2003).
[CrossRef]

Fejer, M. M.

Ferrario, M.

Finot, C.

Freude, W.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[CrossRef]

Gnauck, A. H.

Han, Y.

Han, Y. G.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output performance investigation of self-phase-modulation-based 2R regenerator using bismuth oxide nonlinear fiber,” IEEE Photon. Technol. Lett. 18(12), 1296–1298 (2006).
[CrossRef]

Hasegawa, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output performance investigation of self-phase-modulation-based 2R regenerator using bismuth oxide nonlinear fiber,” IEEE Photon. Technol. Lett. 18(12), 1296–1298 (2006).
[CrossRef]

Hayee, M. I.

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett. 13(8), 881–883 (2001).
[CrossRef]

Headley, C.

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16(1), 200–202 (2004).
[CrossRef]

Her, T.-H.

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16(1), 200–202 (2004).
[CrossRef]

Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” IEEE Photon. Technol. Lett. 15(2), 350–352 (2003).
[CrossRef]

Higuma, K.

Huang, M.-F.

Jinno, M.

M. Jinno and M. Abe, “All-optical regenerator based on nonlinear fiber Sagnac interferometer,” Electron. Lett. 28(14), 1350–1352 (1992).
[CrossRef]

Kawanishi, T.

Kikuchi, K.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output performance investigation of self-phase-modulation-based 2R regenerator using bismuth oxide nonlinear fiber,” IEEE Photon. Technol. Lett. 18(12), 1296–1298 (2006).
[CrossRef]

Kim, C.

Kim, I.

Kishi, N.

Kouloumentas, C.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[CrossRef]

Lakoba, T. I.

Langrock, C.

Leclerc, O.

M. Matsumoto and O. Leclerc, “Analysis of 2R optical regenerator utilizing self-phase-modulation in highly nonlinear fiber,” Electron. Lett. 38(12), 576–577 (2002).
[CrossRef]

Lee, J. H.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output performance investigation of self-phase-modulation-based 2R regenerator using bismuth oxide nonlinear fiber,” IEEE Photon. Technol. Lett. 18(12), 1296–1298 (2006).
[CrossRef]

Lee, S. B.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output performance investigation of self-phase-modulation-based 2R regenerator using bismuth oxide nonlinear fiber,” IEEE Photon. Technol. Lett. 18(12), 1296–1298 (2006).
[CrossRef]

Leuthold, J.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[CrossRef]

Li, G.

Lu, J.

Marazzi, L.

Martelli, P.

Martinelli, M.

Matsumoto, M.

N. S. M. Shah and M. Matsumoto, “2R regeneration of time-interleaved multiwavelength signals based on higher order four-wave mixing in a fiber,” IEEE Photon. Technol. Lett. 22(1), 27–29 (2010).
[CrossRef]

M. Matsumoto and Y. Morioka, “Fiber-based all-optical regeneration of DPSK signals degraded by transmission in a fiber,” Opt. Express 17(8), 6913–6919 (2009).
[CrossRef] [PubMed]

M. Matsumoto, “Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration,” Opt. Express 14(23), 11018–11023 (2006).
[CrossRef] [PubMed]

M. Matsumoto and O. Leclerc, “Analysis of 2R optical regenerator utilizing self-phase-modulation in highly nonlinear fiber,” Electron. Lett. 38(12), 576–577 (2002).
[CrossRef]

Matsuura, M.

Minzioni, P.

Morioka, Y.

Morita, I.

N. Yoshikane, I. Morita, and N. Edagawa, “Improvement of dispersion tolerance by SPM-based all-optical reshaping in receiver,” IEEE Photon. Technol. Lett. 15(1), 111–113 (2003).
[CrossRef]

Mukasa, K.

Nagashima, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output performance investigation of self-phase-modulation-based 2R regenerator using bismuth oxide nonlinear fiber,” IEEE Photon. Technol. Lett. 18(12), 1296–1298 (2006).
[CrossRef]

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output performance investigation of self-phase-modulation-based 2R regenerator using bismuth oxide nonlinear fiber,” IEEE Photon. Technol. Lett. 18(12), 1296–1298 (2006).
[CrossRef]

Parmigiani, F.

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008).
[CrossRef] [PubMed]

L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Investigation of simultaneous 2R regeneration of two 40-Gb/s channels in a single optical fiber,” IEEE Photon. Technol. Lett. 20(4), 270–272 (2008).
[CrossRef]

Parolari, P.

Petropoulos, P.

L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Investigation of simultaneous 2R regeneration of two 40-Gb/s channels in a single optical fiber,” IEEE Photon. Technol. Lett. 20(4), 270–272 (2008).
[CrossRef]

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008).
[CrossRef] [PubMed]

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[CrossRef]

L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
[CrossRef] [PubMed]

Pietralunga, S. M.

Provost, L.

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008).
[CrossRef] [PubMed]

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[CrossRef]

L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Investigation of simultaneous 2R regeneration of two 40-Gb/s channels in a single optical fiber,” IEEE Photon. Technol. Lett. 20(4), 270–272 (2008).
[CrossRef]

Provost, L. A.

Pusino, V.

Raybon, G.

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16(1), 200–202 (2004).
[CrossRef]

Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” IEEE Photon. Technol. Lett. 15(2), 350–352 (2003).
[CrossRef]

Richardson, D. J.

Sahin, A. B.

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett. 13(8), 881–883 (2001).
[CrossRef]

Sakamoto, T.

Schmauss, B.

Shah, N. S. M.

N. S. M. Shah and M. Matsumoto, “2R regeneration of time-interleaved multiwavelength signals based on higher order four-wave mixing in a fiber,” IEEE Photon. Technol. Lett. 22(1), 27–29 (2010).
[CrossRef]

Siano, R.

Striegler, A. G.

Su, Y.

Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” IEEE Photon. Technol. Lett. 15(2), 350–352 (2003).
[CrossRef]

Sugimoto, N.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output performance investigation of self-phase-modulation-based 2R regenerator using bismuth oxide nonlinear fiber,” IEEE Photon. Technol. Lett. 18(12), 1296–1298 (2006).
[CrossRef]

Tomkos, I.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[CrossRef]

Tran, P.

van Deventer, M. O.

M. O. van Deventer and A. J. Boot, “Polarization properties of Stimulated Brillouin Scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

Vasilyev, M.

Vorreau, P.

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[CrossRef]

Wen, S.

Willner, A. E.

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett. 13(8), 881–883 (2001).
[CrossRef]

Winzer, P. J.

Yoshikane, N.

N. Yoshikane, I. Morita, and N. Edagawa, “Improvement of dispersion tolerance by SPM-based all-optical reshaping in receiver,” IEEE Photon. Technol. Lett. 15(1), 111–113 (2003).
[CrossRef]

Yu, J.

Electron. Lett. (2)

M. Jinno and M. Abe, “All-optical regenerator based on nonlinear fiber Sagnac interferometer,” Electron. Lett. 28(14), 1350–1352 (1992).
[CrossRef]

M. Matsumoto and O. Leclerc, “Analysis of 2R optical regenerator utilizing self-phase-modulation in highly nonlinear fiber,” Electron. Lett. 38(12), 576–577 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16(1), 200–202 (2004).
[CrossRef]

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett. 13(8), 881–883 (2001).
[CrossRef]

Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” IEEE Photon. Technol. Lett. 15(2), 350–352 (2003).
[CrossRef]

N. Yoshikane, I. Morita, and N. Edagawa, “Improvement of dispersion tolerance by SPM-based all-optical reshaping in receiver,” IEEE Photon. Technol. Lett. 15(1), 111–113 (2003).
[CrossRef]

L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Investigation of simultaneous 2R regeneration of two 40-Gb/s channels in a single optical fiber,” IEEE Photon. Technol. Lett. 20(4), 270–272 (2008).
[CrossRef]

C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008).
[CrossRef]

N. S. M. Shah and M. Matsumoto, “2R regeneration of time-interleaved multiwavelength signals based on higher order four-wave mixing in a fiber,” IEEE Photon. Technol. Lett. 22(1), 27–29 (2010).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output performance investigation of self-phase-modulation-based 2R regenerator using bismuth oxide nonlinear fiber,” IEEE Photon. Technol. Lett. 18(12), 1296–1298 (2006).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (7)

P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, and V. Degiorgio, “All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal,” Opt. Express 17(20), 17758–17763 (2009).
[CrossRef] [PubMed]

J. Yu, M.-F. Huang, and G.-K. Chang, “Polarization insensitive wavelength conversion for 4x112Gbit/s polarization multiplexing RZ-QPSK signals,” Opt. Express 16(26), 21161–21169 (2008).
[CrossRef] [PubMed]

M. Matsumoto and Y. Morioka, “Fiber-based all-optical regeneration of DPSK signals degraded by transmission in a fiber,” Opt. Express 17(8), 6913–6919 (2009).
[CrossRef] [PubMed]

L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
[CrossRef] [PubMed]

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008).
[CrossRef] [PubMed]

K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express 14(6), 2085–2094 (2006).
[CrossRef] [PubMed]

M. Matsumoto, “Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration,” Opt. Express 14(23), 11018–11023 (2006).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (2)

F. Parmigiani, P. Vorreau, L. Provost, K. Mukasa, P. Petropoulos, D. J. Richardson, W. Freude, and J. Leuthold, “2R Regeneration of two 130 Gbit/s Channels within a Single Fiber,” in Proceedings OFC 2009, paper JThA56, (2009).

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” 1998 European Conference on Optical Communications, 475 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the proposed all-optical regenerator for PDM signals. HP-EDFA: high-power EDFA; OBPF: optical bandpass filter; PC: polarization controller; HNLF: highly nonlinear fiber; PBS: polarization beam splitter; PBC: polarization beam combiner

Fig. 2
Fig. 2

Experimental setup. ECL: external cavity (tunable) laser; MZM: Mach-Zehnder modulator; SMF: single mode fiber; VOA: variable optical attenuator; BERT: bit-error-rate tester; Pol: Polarizer

Fig. 3
Fig. 3

Measured spectra after the polarizer to illustrate the contribution of backscattered noise. (a) broadened signal spectrum for one polarization; (b) maximum and (c) minimum backscattering contribution of the counter-propagating channel as we adjust the polarization controller (PC2 or PC3)

Fig. 4
Fig. 4

Signal spectrum and corresponding eye diagram. (a) degraded signal spectrum and eye diagram; (b) broadened signal spectrum; (c) and (d) signal spectrum and eye diagram after offset filter without and with polarizer, respectively (The power of each spectrum is normalized according to the maximum optical power.)

Fig. 5
Fig. 5

Measured OSNR and corresponding eye diagrams at average optical power −5.17 dBm into 86100C optical head 86116C: results of the CHv channel for the (a) degraded signal and (b) regenerated signal; results of the CHp channel for the (c) degraded signal and (d) regenerated signal.

Fig. 6
Fig. 6

Measured BER results and corresponding eye diagrams of degraded and regenerated signals for the two PDM channels

Metrics