Abstract

The plane-wave expansion method (PWEM), the multiple-scattering method (MSM) and the 3D finite-difference time-domain method (FDTD) are applied for simulations of propagation of electromagnetic waves through 3D colloidal photonic crystals. The system investigated is not a “usual” artificial opal with close-packed fcc lattice but a dilute bcc structure which occurs due to long-range repulsive interaction between electrically charged colloidal particles during the growth process. The basic optical properties of non-close-packed colloidal PhCs are explored by examining the band structure and reflection spectra for a bcc lattice of silica spheres in an aqueous medium. Finite size effects and correspondence between the Bragg model, band structure and reflection spectra are discussed. The effects of size, positional and missing-spheres disorder are investigated. In addition, by analyzing the results of experimental work we show that the fabricated structures have reduced plane-to-plane distance probably due to the effect of gravity during growth.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Vos, M. Megens, C. M. Kats, and P. Bösecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys. Condens. Matter 8(47), 9503–9507 (1996).
    [CrossRef]
  2. H. Míguez, F. Meseguer, C. López, A. Mifsud, J. S. Moya, and L. Vázquez, “Evidence of FCC Crystallization of SiO2 Nanospheres,” Langmuir 13(23), 6009–6011 (1997).
    [CrossRef]
  3. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3896–3908 (1998).
    [CrossRef]
  4. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933 (1999).
    [CrossRef]
  5. G. S. Lozano, L. A. Dorado, R. A. Depine, and H. Míguez, “Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films,” J. Mater. Chem. 19(2), 185–190 (2008).
    [CrossRef]
  6. M. Bardosova and R. H. Tredgold, “Ordered layers of monodispersive colloids,” J. Mater. Chem. 12(10), 2835–2842 (2002).
    [CrossRef]
  7. M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437(1-2), 276–279 (2003).
    [CrossRef]
  8. H. Nakamura and M. Ishii, “Effects of medium composition on optical properties and microstructures of non-close-packed colloidal crystalline arrays,” Colloid Polym. Sci. 285(7), 833–837 (2007).
    [CrossRef]
  9. Yu. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
    [CrossRef]
  10. A. Toyotama, J. Yamanaka, M. Yonese, T. Sawada, and F. Uchida, “Thermally driven unidirectional crystallization of charged colloidal silica,” J. Am. Chem. Soc. 129(11), 3044–3045 (2007).
    [CrossRef] [PubMed]
  11. B. V. R. Tata and S. S. Jena, “Ordering dynamics and phase transitions in charged colloids,” Solid State Commun. 139(11-12), 562–580 (2006).
    [CrossRef]
  12. R. Goldberg and H. J. Schope, “Opaline hydrogels: polycrystalline body-centered-cubic bulk material with an in situ variable lattice constant,” Chem. Mater. 19(25), 6095–6100 (2007).
    [CrossRef]
  13. J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, “Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals,” Phys. Rev. Lett. 83(2), 300–303 (1999).
    [CrossRef]
  14. F. Galisteo-Lopez, F. Garcia-Santamara, D. Golmayo, B. H. Juarez, C. Lopez, and E. Palacios-Lidon, “Design of photonic bands for opal-based photonic crystals,” Photon. Nanostr.: Fund. Appl. 2(2), 117–125 (2004).
    [CrossRef]
  15. P. D. García, R. Sapienza, and C. López, “Photonic Glasses: A Step Beyond White Paint,” Adv. Mater. 22(1), 12–19 (2010)).
    [CrossRef] [PubMed]
  16. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132(1-2), 189–196 (2000).
    [CrossRef]

2010

P. D. García, R. Sapienza, and C. López, “Photonic Glasses: A Step Beyond White Paint,” Adv. Mater. 22(1), 12–19 (2010)).
[CrossRef] [PubMed]

2008

G. S. Lozano, L. A. Dorado, R. A. Depine, and H. Míguez, “Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films,” J. Mater. Chem. 19(2), 185–190 (2008).
[CrossRef]

2007

H. Nakamura and M. Ishii, “Effects of medium composition on optical properties and microstructures of non-close-packed colloidal crystalline arrays,” Colloid Polym. Sci. 285(7), 833–837 (2007).
[CrossRef]

A. Toyotama, J. Yamanaka, M. Yonese, T. Sawada, and F. Uchida, “Thermally driven unidirectional crystallization of charged colloidal silica,” J. Am. Chem. Soc. 129(11), 3044–3045 (2007).
[CrossRef] [PubMed]

R. Goldberg and H. J. Schope, “Opaline hydrogels: polycrystalline body-centered-cubic bulk material with an in situ variable lattice constant,” Chem. Mater. 19(25), 6095–6100 (2007).
[CrossRef]

2006

B. V. R. Tata and S. S. Jena, “Ordering dynamics and phase transitions in charged colloids,” Solid State Commun. 139(11-12), 562–580 (2006).
[CrossRef]

2004

F. Galisteo-Lopez, F. Garcia-Santamara, D. Golmayo, B. H. Juarez, C. Lopez, and E. Palacios-Lidon, “Design of photonic bands for opal-based photonic crystals,” Photon. Nanostr.: Fund. Appl. 2(2), 117–125 (2004).
[CrossRef]

2003

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437(1-2), 276–279 (2003).
[CrossRef]

Yu. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

2002

M. Bardosova and R. H. Tredgold, “Ordered layers of monodispersive colloids,” J. Mater. Chem. 12(10), 2835–2842 (2002).
[CrossRef]

2000

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132(1-2), 189–196 (2000).
[CrossRef]

1999

J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, “Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals,” Phys. Rev. Lett. 83(2), 300–303 (1999).
[CrossRef]

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933 (1999).
[CrossRef]

1998

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3896–3908 (1998).
[CrossRef]

1997

H. Míguez, F. Meseguer, C. López, A. Mifsud, J. S. Moya, and L. Vázquez, “Evidence of FCC Crystallization of SiO2 Nanospheres,” Langmuir 13(23), 6009–6011 (1997).
[CrossRef]

1996

W. L. Vos, M. Megens, C. M. Kats, and P. Bösecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys. Condens. Matter 8(47), 9503–9507 (1996).
[CrossRef]

Bardosova, M.

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437(1-2), 276–279 (2003).
[CrossRef]

M. Bardosova and R. H. Tredgold, “Ordered layers of monodispersive colloids,” J. Mater. Chem. 12(10), 2835–2842 (2002).
[CrossRef]

Bertone, J. F.

J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, “Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals,” Phys. Rev. Lett. 83(2), 300–303 (1999).
[CrossRef]

Biswas, R.

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933 (1999).
[CrossRef]

Bösecke, P.

W. L. Vos, M. Megens, C. M. Kats, and P. Bösecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys. Condens. Matter 8(47), 9503–9507 (1996).
[CrossRef]

Busch, K.

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3896–3908 (1998).
[CrossRef]

Colvin, V. L.

J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, “Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals,” Phys. Rev. Lett. 83(2), 300–303 (1999).
[CrossRef]

Constant, K.

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933 (1999).
[CrossRef]

Depine, R. A.

G. S. Lozano, L. A. Dorado, R. A. Depine, and H. Míguez, “Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films,” J. Mater. Chem. 19(2), 185–190 (2008).
[CrossRef]

Dorado, L. A.

G. S. Lozano, L. A. Dorado, R. A. Depine, and H. Míguez, “Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films,” J. Mater. Chem. 19(2), 185–190 (2008).
[CrossRef]

Galisteo-Lopez, F.

F. Galisteo-Lopez, F. Garcia-Santamara, D. Golmayo, B. H. Juarez, C. Lopez, and E. Palacios-Lidon, “Design of photonic bands for opal-based photonic crystals,” Photon. Nanostr.: Fund. Appl. 2(2), 117–125 (2004).
[CrossRef]

García, P. D.

P. D. García, R. Sapienza, and C. López, “Photonic Glasses: A Step Beyond White Paint,” Adv. Mater. 22(1), 12–19 (2010)).
[CrossRef] [PubMed]

Garcia-Santamara, F.

F. Galisteo-Lopez, F. Garcia-Santamara, D. Golmayo, B. H. Juarez, C. Lopez, and E. Palacios-Lidon, “Design of photonic bands for opal-based photonic crystals,” Photon. Nanostr.: Fund. Appl. 2(2), 117–125 (2004).
[CrossRef]

Goldberg, R.

R. Goldberg and H. J. Schope, “Opaline hydrogels: polycrystalline body-centered-cubic bulk material with an in situ variable lattice constant,” Chem. Mater. 19(25), 6095–6100 (2007).
[CrossRef]

Golmayo, D.

F. Galisteo-Lopez, F. Garcia-Santamara, D. Golmayo, B. H. Juarez, C. Lopez, and E. Palacios-Lidon, “Design of photonic bands for opal-based photonic crystals,” Photon. Nanostr.: Fund. Appl. 2(2), 117–125 (2004).
[CrossRef]

Ho, K.-M.

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933 (1999).
[CrossRef]

Hodge, P.

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437(1-2), 276–279 (2003).
[CrossRef]

Hwang, K. S.

J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, “Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals,” Phys. Rev. Lett. 83(2), 300–303 (1999).
[CrossRef]

Ishii, M.

H. Nakamura and M. Ishii, “Effects of medium composition on optical properties and microstructures of non-close-packed colloidal crystalline arrays,” Colloid Polym. Sci. 285(7), 833–837 (2007).
[CrossRef]

Ito, K.

Yu. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Iwayama, Yu.

Yu. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Jena, S. S.

B. V. R. Tata and S. S. Jena, “Ordering dynamics and phase transitions in charged colloids,” Solid State Commun. 139(11-12), 562–580 (2006).
[CrossRef]

Jiang, P.

J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, “Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals,” Phys. Rev. Lett. 83(2), 300–303 (1999).
[CrossRef]

John, S.

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3896–3908 (1998).
[CrossRef]

Juarez, B. H.

F. Galisteo-Lopez, F. Garcia-Santamara, D. Golmayo, B. H. Juarez, C. Lopez, and E. Palacios-Lidon, “Design of photonic bands for opal-based photonic crystals,” Photon. Nanostr.: Fund. Appl. 2(2), 117–125 (2004).
[CrossRef]

Kats, C. M.

W. L. Vos, M. Megens, C. M. Kats, and P. Bösecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys. Condens. Matter 8(47), 9503–9507 (1996).
[CrossRef]

Lopez, C.

F. Galisteo-Lopez, F. Garcia-Santamara, D. Golmayo, B. H. Juarez, C. Lopez, and E. Palacios-Lidon, “Design of photonic bands for opal-based photonic crystals,” Photon. Nanostr.: Fund. Appl. 2(2), 117–125 (2004).
[CrossRef]

López, C.

P. D. García, R. Sapienza, and C. López, “Photonic Glasses: A Step Beyond White Paint,” Adv. Mater. 22(1), 12–19 (2010)).
[CrossRef] [PubMed]

H. Míguez, F. Meseguer, C. López, A. Mifsud, J. S. Moya, and L. Vázquez, “Evidence of FCC Crystallization of SiO2 Nanospheres,” Langmuir 13(23), 6009–6011 (1997).
[CrossRef]

Lozano, G. S.

G. S. Lozano, L. A. Dorado, R. A. Depine, and H. Míguez, “Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films,” J. Mater. Chem. 19(2), 185–190 (2008).
[CrossRef]

Megens, M.

W. L. Vos, M. Megens, C. M. Kats, and P. Bösecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys. Condens. Matter 8(47), 9503–9507 (1996).
[CrossRef]

Meseguer, F.

H. Míguez, F. Meseguer, C. López, A. Mifsud, J. S. Moya, and L. Vázquez, “Evidence of FCC Crystallization of SiO2 Nanospheres,” Langmuir 13(23), 6009–6011 (1997).
[CrossRef]

Mifsud, A.

H. Míguez, F. Meseguer, C. López, A. Mifsud, J. S. Moya, and L. Vázquez, “Evidence of FCC Crystallization of SiO2 Nanospheres,” Langmuir 13(23), 6009–6011 (1997).
[CrossRef]

Míguez, H.

G. S. Lozano, L. A. Dorado, R. A. Depine, and H. Míguez, “Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films,” J. Mater. Chem. 19(2), 185–190 (2008).
[CrossRef]

H. Míguez, F. Meseguer, C. López, A. Mifsud, J. S. Moya, and L. Vázquez, “Evidence of FCC Crystallization of SiO2 Nanospheres,” Langmuir 13(23), 6009–6011 (1997).
[CrossRef]

Mittleman, D. M.

J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, “Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals,” Phys. Rev. Lett. 83(2), 300–303 (1999).
[CrossRef]

Modinos, A.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132(1-2), 189–196 (2000).
[CrossRef]

Moya, J. S.

H. Míguez, F. Meseguer, C. López, A. Mifsud, J. S. Moya, and L. Vázquez, “Evidence of FCC Crystallization of SiO2 Nanospheres,” Langmuir 13(23), 6009–6011 (1997).
[CrossRef]

Nakamura, H.

H. Nakamura and M. Ishii, “Effects of medium composition on optical properties and microstructures of non-close-packed colloidal crystalline arrays,” Colloid Polym. Sci. 285(7), 833–837 (2007).
[CrossRef]

Pach, L.

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437(1-2), 276–279 (2003).
[CrossRef]

Palacios-Lidon, E.

F. Galisteo-Lopez, F. Garcia-Santamara, D. Golmayo, B. H. Juarez, C. Lopez, and E. Palacios-Lidon, “Design of photonic bands for opal-based photonic crystals,” Photon. Nanostr.: Fund. Appl. 2(2), 117–125 (2004).
[CrossRef]

Pemble, M. E.

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437(1-2), 276–279 (2003).
[CrossRef]

Sapienza, R.

P. D. García, R. Sapienza, and C. López, “Photonic Glasses: A Step Beyond White Paint,” Adv. Mater. 22(1), 12–19 (2010)).
[CrossRef] [PubMed]

Sawada, T.

A. Toyotama, J. Yamanaka, M. Yonese, T. Sawada, and F. Uchida, “Thermally driven unidirectional crystallization of charged colloidal silica,” J. Am. Chem. Soc. 129(11), 3044–3045 (2007).
[CrossRef] [PubMed]

Yu. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Schope, H. J.

R. Goldberg and H. J. Schope, “Opaline hydrogels: polycrystalline body-centered-cubic bulk material with an in situ variable lattice constant,” Chem. Mater. 19(25), 6095–6100 (2007).
[CrossRef]

Shinohara, T.

Yu. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Sigalas, M. M.

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933 (1999).
[CrossRef]

Smatko, V.

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437(1-2), 276–279 (2003).
[CrossRef]

Stefanou, N.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132(1-2), 189–196 (2000).
[CrossRef]

Subramania, G.

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933 (1999).
[CrossRef]

Takasaka, M.

Yu. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Takiguchi, Y.

Yu. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Tata, B. V. R.

B. V. R. Tata and S. S. Jena, “Ordering dynamics and phase transitions in charged colloids,” Solid State Commun. 139(11-12), 562–580 (2006).
[CrossRef]

Toyotama, A.

A. Toyotama, J. Yamanaka, M. Yonese, T. Sawada, and F. Uchida, “Thermally driven unidirectional crystallization of charged colloidal silica,” J. Am. Chem. Soc. 129(11), 3044–3045 (2007).
[CrossRef] [PubMed]

Tredgold, R. H.

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437(1-2), 276–279 (2003).
[CrossRef]

M. Bardosova and R. H. Tredgold, “Ordered layers of monodispersive colloids,” J. Mater. Chem. 12(10), 2835–2842 (2002).
[CrossRef]

Uchida, F.

A. Toyotama, J. Yamanaka, M. Yonese, T. Sawada, and F. Uchida, “Thermally driven unidirectional crystallization of charged colloidal silica,” J. Am. Chem. Soc. 129(11), 3044–3045 (2007).
[CrossRef] [PubMed]

Vázquez, L.

H. Míguez, F. Meseguer, C. López, A. Mifsud, J. S. Moya, and L. Vázquez, “Evidence of FCC Crystallization of SiO2 Nanospheres,” Langmuir 13(23), 6009–6011 (1997).
[CrossRef]

Vos, W. L.

W. L. Vos, M. Megens, C. M. Kats, and P. Bösecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys. Condens. Matter 8(47), 9503–9507 (1996).
[CrossRef]

Whitehead, D.

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437(1-2), 276–279 (2003).
[CrossRef]

Yamanaka, J.

A. Toyotama, J. Yamanaka, M. Yonese, T. Sawada, and F. Uchida, “Thermally driven unidirectional crystallization of charged colloidal silica,” J. Am. Chem. Soc. 129(11), 3044–3045 (2007).
[CrossRef] [PubMed]

Yu. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Yannopapas, V.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132(1-2), 189–196 (2000).
[CrossRef]

Yonese, M.

A. Toyotama, J. Yamanaka, M. Yonese, T. Sawada, and F. Uchida, “Thermally driven unidirectional crystallization of charged colloidal silica,” J. Am. Chem. Soc. 129(11), 3044–3045 (2007).
[CrossRef] [PubMed]

Yu. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Adv. Mater.

P. D. García, R. Sapienza, and C. López, “Photonic Glasses: A Step Beyond White Paint,” Adv. Mater. 22(1), 12–19 (2010)).
[CrossRef] [PubMed]

Appl. Phys. Lett.

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74(26), 3933 (1999).
[CrossRef]

Chem. Mater.

R. Goldberg and H. J. Schope, “Opaline hydrogels: polycrystalline body-centered-cubic bulk material with an in situ variable lattice constant,” Chem. Mater. 19(25), 6095–6100 (2007).
[CrossRef]

Colloid Polym. Sci.

H. Nakamura and M. Ishii, “Effects of medium composition on optical properties and microstructures of non-close-packed colloidal crystalline arrays,” Colloid Polym. Sci. 285(7), 833–837 (2007).
[CrossRef]

Comput. Phys. Commun.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132(1-2), 189–196 (2000).
[CrossRef]

J. Am. Chem. Soc.

A. Toyotama, J. Yamanaka, M. Yonese, T. Sawada, and F. Uchida, “Thermally driven unidirectional crystallization of charged colloidal silica,” J. Am. Chem. Soc. 129(11), 3044–3045 (2007).
[CrossRef] [PubMed]

J. Mater. Chem.

G. S. Lozano, L. A. Dorado, R. A. Depine, and H. Míguez, “Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films,” J. Mater. Chem. 19(2), 185–190 (2008).
[CrossRef]

M. Bardosova and R. H. Tredgold, “Ordered layers of monodispersive colloids,” J. Mater. Chem. 12(10), 2835–2842 (2002).
[CrossRef]

J. Phys. Condens. Matter

W. L. Vos, M. Megens, C. M. Kats, and P. Bösecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys. Condens. Matter 8(47), 9503–9507 (1996).
[CrossRef]

Langmuir

H. Míguez, F. Meseguer, C. López, A. Mifsud, J. S. Moya, and L. Vázquez, “Evidence of FCC Crystallization of SiO2 Nanospheres,” Langmuir 13(23), 6009–6011 (1997).
[CrossRef]

Yu. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Photon. Nanostr.: Fund. Appl.

F. Galisteo-Lopez, F. Garcia-Santamara, D. Golmayo, B. H. Juarez, C. Lopez, and E. Palacios-Lidon, “Design of photonic bands for opal-based photonic crystals,” Photon. Nanostr.: Fund. Appl. 2(2), 117–125 (2004).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3896–3908 (1998).
[CrossRef]

Phys. Rev. Lett.

J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, “Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals,” Phys. Rev. Lett. 83(2), 300–303 (1999).
[CrossRef]

Solid State Commun.

B. V. R. Tata and S. S. Jena, “Ordering dynamics and phase transitions in charged colloids,” Solid State Commun. 139(11-12), 562–580 (2006).
[CrossRef]

Thin Solid Films

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437(1-2), 276–279 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Band structure of a 3D photonic crystal with the following parameters: bcc lattice, εb = 1.33, εsph = 1.46, r = 0.18a. Inset shows the pseudogap at the N-point

Fig. 2
Fig. 2

Reflection peak calculated by MSM for [110] propagation direction in bcc lattice for a PhC with nb = 1.33, nsph = 1.46, r = 0.18a. N is the number of (110) planes. Vertical dotted lines show the edges of the band gap calculated by the PWE method

Fig. 4
Fig. 4

(a) The distribution of Ey field component inside the photonic crystal (spheres are not shown).( b) The time-dependent transmittance and reflectance. The time is given in units of a/c.

Fig. 3
Fig. 3

General view of the problem (without disorder) in (a) 2D, xz cross-section and (b) 3D. The structure consists of 70 (110) planes in z direction.

Fig. 5
Fig. 5

Reflectance curves calculated by 3D FDTD method for disorder in radii (a), positional disorder (b), and missing-spheres disorder (c). More detailed description is in text.

Fig. 6
Fig. 6

Reflectance peak calculated by MSM for [110] propagation direction in bcc lattice for a PhC with nb = 1.35, nsph = 1.42, r = 0.16a. N is the number of (110) planes. Vertical dotted lines show the edges of the band gap calculated by the PWEM.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 d n eff ,
n eff 2 = ε eff = ε b ( 1 + 2 f ) ε s p h + 2 ( 1 f ) ε b ( 1 f ) ε s p h + ( 2 + f ) ε b ,
a = r 8 π 3 f 3 .

Metrics