Abstract

A novel type of GaN-based LED with a highly polarized output using an integrated multi-layer subwavelength grating structure is proposed. Characteristics of both optical transmission and polarization extinction ratio of the polarized GaN-based LED with three different multi-layer subwavelength structures are investigated. It is found that both TM transmission (TTM) and the extinction ratio(ER) of the LED output can be effectively enhanced by incorporating a dielectric transition layer between the metal grating and GaN substrate with a lower refractive index than that of the GaN substrate. Flat sensitivity of the TTM on the period, duty cycle of the metallic grating, and the wide range of operating wavelength have been achieved in contrast to the conventional sensitive behavior in single-layer metallic grating. Up to 0.75 high duty cycle of the metallic grating can be employed to achieve >60dB ER while TTM maintains higher than ~90%, which breaks the conventional limit of TTM and ER being always a pair of trade-off parameters. Typical optimized multilayer structures in terms of material, thickness, grating periods and duty cycle using MgF2 and ZnS, respectively, as the transition layers are obtained. The results provide guidance in designing, optimizing and fabricating the novel integrated GaN-based and polarized photonic devices.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim, and Y. H. Lee, “Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes,” Opt. Express 14(19), 8654–8660 (2006).
    [CrossRef] [PubMed]
  2. K. Kojima, U. T. Schwarz, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, “Optical gain spectra for near UV to aquamarine (Al,In)GaN laser diodes,” Opt. Express 15(12), 7730–7736 (2007).
    [CrossRef] [PubMed]
  3. H. G. Kim, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, T. V. Cuong, and C. H. Hong, “Effect of periodic deflector embedded in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 90, 314–316 (2007).
  4. X. H. Wang, W. Y. Fu, P. T. Lai, and H. W. Choi, “Evaluation of InGaN/GaN light-emitting diodes of circular geometry,” Opt. Express 17(25), 22311–22319 (2009).
    [CrossRef]
  5. J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
    [CrossRef]
  6. C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006).
    [CrossRef]
  7. T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15(11), 6670–6676 (2007).
    [CrossRef] [PubMed]
  8. C. Y. Wang, L. Y. Chen, C. P. Chen, Y. W. Cheng, M. Y. Ke, M. Y. Hsieh, H. M. Wu, L. H. Peng, and J. J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Opt. Express 16(14), 10549–10556 (2008).
    [CrossRef] [PubMed]
  9. J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, “Fabrication of a new broadband TM-pass waveguide polarizer with a double-layer 190nm metal gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 17(6), 2957–2960 (1999).
    [CrossRef]
  10. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
    [CrossRef] [PubMed]
  11. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
    [CrossRef]
  12. J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005).
    [CrossRef] [PubMed]
  13. Z. Wu, P. E. Powers, A. M. Sarangan, and Q. Zhan, “Optical characterization of wiregrid micropolarizers designed for infrared imaging polarimetry,” Opt. Lett. 33(15), 1653–1655 (2008).
    [CrossRef] [PubMed]
  14. I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, “Mid-infrared wire-grid polarizer with silicides,” Opt. Lett. 33(3), 258–260 (2008).
    [CrossRef] [PubMed]
  15. W. L. Chang, P. H. Tsao, and P. K. Wei, “Sub-100 nm photolithography using TE-polarized waves in transparent nanostructures,” Opt. Lett. 32(1), 71–73 (2007).
    [CrossRef]
  16. L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
    [CrossRef]
  17. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 1780–1787 (1986).
    [CrossRef]
  18. S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
    [CrossRef]
  19. D. Kim, “Performance uniformity analysis of a wire-grid polarizer in imaging polarimetry,” Appl. Opt. 44(26), 5398–5402 (2005).
    [CrossRef] [PubMed]
  20. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief grating: conical diffraction and antireflection designs,” Appl. Opt. 33(13), 2695–2706 (1994).
    [CrossRef] [PubMed]
  21. R. E. Smith, M. E. Warren, J. R. Wendt, and G. A. Vawter, “Polarization-sensitive subwavelength antireflection surfaces on a semiconductor for 975 nm,” Opt. Lett. 21(15), 1201–1203 (1996).
    [CrossRef] [PubMed]

2009 (2)

L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[CrossRef]

X. H. Wang, W. Y. Fu, P. T. Lai, and H. W. Choi, “Evaluation of InGaN/GaN light-emitting diodes of circular geometry,” Opt. Express 17(25), 22311–22319 (2009).
[CrossRef]

2008 (3)

2007 (4)

2006 (3)

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim, and Y. H. Lee, “Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes,” Opt. Express 14(19), 8654–8660 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

2001 (1)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

2000 (1)

S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[CrossRef]

1999 (1)

J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, “Fabrication of a new broadband TM-pass waveguide polarizer with a double-layer 190nm metal gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 17(6), 2957–2960 (1999).
[CrossRef]

1996 (1)

1994 (1)

1986 (1)

Akioka, S.

Astilean, S.

S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[CrossRef]

Bolivar, P. H.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Brundrett, D. L.

Chang, W. L.

Chen, C. P.

Chen, C. Y.

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006).
[CrossRef]

Chen, L.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005).
[CrossRef] [PubMed]

Chen, L. Y.

Cheng, Y. W.

Chien, W. T.

Cho, H. K.

Choe, Y. H.

Choi, H. W.

Choi, J.

Choi, J. H.

Chou, S. Y.

J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, “Fabrication of a new broadband TM-pass waveguide polarizer with a double-layer 190nm metal gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 17(6), 2957–2960 (1999).
[CrossRef]

Chua, S. J.

L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[CrossRef]

Cuong, T. V.

H. G. Kim, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, T. V. Cuong, and C. H. Hong, “Effect of periodic deflector embedded in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 90, 314–316 (2007).

Deng, J.

Deng, X.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005).
[CrossRef] [PubMed]

Fitzgerald, E. A.

L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[CrossRef]

Fu, W. Y.

Funato, M.

Gao, K. F.

Gaylord, T. K.

Glytsis, E. N.

Hong, C. H.

H. G. Kim, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, T. V. Cuong, and C. H. Hong, “Effect of periodic deflector embedded in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 90, 314–316 (2007).

Hsieh, M. Y.

Huang, J. J.

Jang, J.

Kawakami, Y.

Ke, M. Y.

Kim, D.

Kim, H. G.

H. G. Kim, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, T. V. Cuong, and C. H. Hong, “Effect of periodic deflector embedded in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 90, 314–316 (2007).

Kim, H. K.

H. G. Kim, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, T. V. Cuong, and C. H. Hong, “Effect of periodic deflector embedded in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 90, 314–316 (2007).

Kim, H. Y.

H. G. Kim, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, T. V. Cuong, and C. H. Hong, “Effect of periodic deflector embedded in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 90, 314–316 (2007).

Kim, J.

Kim, S. H.

Kim, S. K.

Kintaka, K.

Kojima, K.

Kurz, H.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Kuttge, M.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Lai, P. T.

Lalanne, Ph.

S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[CrossRef]

Lee, B.

Lee, J. S.

Lee, K.

Lee, K. D.

Lee, T. X.

Lee, Y. H.

Liu, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005).
[CrossRef] [PubMed]

Liu, X.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

Lu, Y. C.

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006).
[CrossRef]

Moharam, M. G.

Mukai, T.

Na, M. G.

H. G. Kim, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, T. V. Cuong, and C. H. Hong, “Effect of periodic deflector embedded in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 90, 314–316 (2007).

Nagahama, S.

Nishii, J.

Palamaru, M.

S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[CrossRef]

Peng, L. H.

Powers, P. E.

Rivas, J. G.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Ryu, J. H.

H. G. Kim, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, T. V. Cuong, and C. H. Hong, “Effect of periodic deflector embedded in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 90, 314–316 (2007).

Saito, M.

Sánchez-Gil, J. A.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Sarangan, A. M.

Schablitsky, S.

J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, “Fabrication of a new broadband TM-pass waveguide polarizer with a double-layer 190nm metal gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 17(6), 2957–2960 (1999).
[CrossRef]

Schwarz, U. T.

Sciortino, P.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005).
[CrossRef] [PubMed]

Smith, R. E.

Sun, C. C.

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

Teng, J. H.

L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[CrossRef]

Tsao, P. H.

Vawter, G. A.

Walters, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

Wang, C. Y.

Wang, J.

J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, “Fabrication of a new broadband TM-pass waveguide polarizer with a double-layer 190nm metal gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 17(6), 2957–2960 (1999).
[CrossRef]

Wang, J. J.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005).
[CrossRef] [PubMed]

Wang, X. H.

Warren, M. E.

Wei, P. K.

Wendt, J. R.

Wu, H. M.

Wu, W.

J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, “Fabrication of a new broadband TM-pass waveguide polarizer with a double-layer 190nm metal gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 17(6), 2957–2960 (1999).
[CrossRef]

Wu, Z.

Yamada, I.

Yamagishi, Y.

Yang, C. C.

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006).
[CrossRef]

Yeh, D. M.

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006).
[CrossRef]

Yu, Z.

J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, “Fabrication of a new broadband TM-pass waveguide polarizer with a double-layer 190nm metal gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 17(6), 2957–2960 (1999).
[CrossRef]

Zhan, Q.

Zhang, L.

L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[CrossRef]

Zhang, W.

Appl. Opt. (2)

Appl. Phys. Lett. (4)

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009).
[CrossRef]

H. G. Kim, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, T. V. Cuong, and C. H. Hong, “Effect of periodic deflector embedded in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 90, 314–316 (2007).

C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, “Fabrication of a new broadband TM-pass waveguide polarizer with a double-layer 190nm metal gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 17(6), 2957–2960 (1999).
[CrossRef]

Opt. Commun. (1)

S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000).
[CrossRef]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Diagram of polarized GaN-based LEDs with integrated subwavelength metallic grating structures. (a) Type-I: metallic grating directly on GaN substrate; (b) Type-II: metallic grating on a dielectric transition layer of GaN substrate; (c) Type-III: metallic grating and a dielectric grating on GaN substrate.

Fig. 2
Fig. 2

Polarization properties (TM transmission and ER) versus thickness of the transition dielectric layer: (a) Type-II; (b) Type-III.

Fig. 3
Fig. 3

TM transmission and ER versus aluminum grating period for Type-I and Type-II: (a) TTM; (b) ER. The height and duty cycle of Al grating is 120nm and 0.5, respectively.

Fig. 4
Fig. 4

TM transmission and ER versus aluminum grating period for Type-I and Type-III: (a) TM transmission; (b) ER. The height and duty cycle of Al grating is 150nm and 0.5, respectively.

Fig. 5
Fig. 5

TM transmission and ER versus duty cycle of Al grating of Type-II and Type-I: (a) TM transmission; (b) ER. The period and height of Al grating are 130nm and 120nm, respectively.

Fig. 6
Fig. 6

TM transmission and ER versus duty cycle of Al grating of Type-III and Type-I: (a) TM transmission; (b) ER. The period and height of Al grating are both 150nm.

Fig. 7
Fig. 7

TM transmission and ER versus height of Al grating of Type-II and Type-I: (a) TM transmission; (b) ER. The period and the duty cycle of Al grating are separately 130nm and 0.5.

Fig. 8
Fig. 8

TM transmission and ER versus height of Al grating of Type-III and Type-I: (a) TM transmission; (b) ER. The period and the duty cycle of Al grating are separately 150nm and 0.5.

Fig. 9
Fig. 9

TM transmission and ER versus operating wavelength of Type-II and Type-I: (a) TM transmission; (b) ER. The Al grating period and thickness are separately 130nm and 120nm.

Fig. 10
Fig. 10

TM transmission and ER versus operating wavelength of Type-III and Type-I: (a) TM transmission; (b) ER. The period and the height of the Al grating are both150nm.

Fig. 11
Fig. 11

TM transmission and ER versus incident angle θ of Type-I, Type-II and Type-III at azimuthal angle Φ=0°: (a) TM transmission; (b) ER. The period and the height of the Al grating are separately 130nm and 120nm.

Tables (1)

Tables Icon

Table 1 Simulation results of the polarization performance for type-II and type-III

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E R = 10 log ( T T M / T T E )

Metrics