Abstract

We report on the utilization of the two-photon induced free carrier generation in a diamond pin-type photodiode to record fringe-resolved second-order autocorrelations of femtosecond pulses in the UV. Measurements in photovoltaic mode are performed at the second and third harmonic of a Ti:sapphire laser (λ0=401nm and λ0=265nm) with pulse energies down to about 2 nJ. The band gap of diamond of 5.5 eV sets a short wavelength limit at about 225 nm. Combined with the simultaneously recorded linear autocorrelation the spectral phase is reconstructed employing an iterative algorithm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101-1111 (1993).
    [CrossRef]
  2. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792-794 (1998).
    [CrossRef]
  3. K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25(6), 1225-1233 (1989).
    [CrossRef]
  4. J. Peatross and A. Rundquist, “Temporal decorrelation of short laser pulses,” J. Opt. Soc. Am. B 15(1), 216–222 (1998).
    [CrossRef]
  5. J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto, and A. J. Taylor, “Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements,” Opt. Lett. 24(23), 1774-1776 (1999).
    [CrossRef]
  6. K. Kato, “Second-harmonic generation to 2048Å in,” IEEE J. Quantum Electron. 22(7), 1013-1014 (1986).
    [CrossRef]
  7. C. Chen, “Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal,” Opt. Mater. 26(4), 425-429 (2004).
    [CrossRef]
  8. S. P. Le Blanc, G. Szabo, and A. R. Sauerbrey, “Femtosecond single-shot phase-sensitive autocorrelator for the ultraviolet,” Opt. Lett. 16(19), 1508-1510 (1991).
    [CrossRef] [PubMed]
  9. Y. M. Li and R. Fedosejevs, “Visible single-shot autocorrelator in BaF2 for subpicosecond KrF laser pulses,” Appl. Opt. 35(15), 2583-2586 (1996).
    [CrossRef] [PubMed]
  10. F. G. Omenetto, W. A. Schroeder, K. Boyer, J. W. Longworth, A. McPherson, and C. K. Rhodes, “Measurement of 160-fs, 248-nm pulses by two-photon fluorescence in fused-silica crystals,” Appl. Opt. 36(15), 3421-3424 (1997).
    [CrossRef] [PubMed]
  11. J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, “Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement,” Opt. Lett. 16(7), 499-501 (1991).
    [CrossRef] [PubMed]
  12. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277-3295 (1997).
    [CrossRef]
  13. D. J. Kane, A. J. Taylor, R. Trebino, and K. W. Delong, “Single-shot measurement of the intensity and phase of a femtosecond UV laser pulse with frequency-resolved optical gating,” Opt. Lett. 19(14), 1061-1063 (1994).
    [CrossRef] [PubMed]
  14. K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).
  15. W. Plaß, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV- and IR pulses,” Appl. Phys. B 54, 199-201 (1992).
    [CrossRef]
  16. M. Anderson, T. Witting, and I. A. Walmsley, “Gold-SPIDER: spectral phase interferometry for direct electric field reconstruction utilizing sum-frequency generation from a gold surface,” J. Opt. Soc. Am. B 25(6), A13-A16 (2008).
    [CrossRef]
  17. C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
    [CrossRef]
  18. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett. 17(9), 658-660 (1992).
    [CrossRef] [PubMed]
  19. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22(17), 1344-1346 (1997).
    [CrossRef]
  20. T. Feurer, A. Glass, and R. Sauerbrey, “Two-photon photoconductivity in SiC photodiodes and its application to autocorrelation measurements of femtosecond optical pulses,” Appl. Phys. B 65(2), 295-297 (1997).
    [CrossRef]
  21. A. M. Streltsov, J. K. Ranka, and A. L. Gaeta, “Femtosecond ultraviolet autocorrelation measurements based on two-photon conductivity in fused silica,” Opt. Lett. 23(10), 798-800 (1998).
    [CrossRef]
  22. S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond pn junction,” Science 292(5523), 1899-1901 (2001).
    [CrossRef] [PubMed]
  23. A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
    [CrossRef]
  24. J. Hüve, T. Haarlammert, T. Steinbrück, J. Kutzner, G. Tsilimis, and H. Zacharias, “High-flux high harmonic soft X-ray generation up to 10 kHz repetition rate,” Opt. Commun. 266(1), 261-265 (2006).
    [CrossRef]
  25. S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338-340 (1995).
    [CrossRef]
  26. N. Nikogosyan, Properties of Optical and Laser-Related Material (John Wiley and Sons, 1998).
  27. C. Spielmann, L. Xu, and F. Krausz, “Measurement of interferometric autocorrelations: comment,” Appl. Opt. 36(12), 2523-2525 (1997).
    [CrossRef] [PubMed]
  28. K. Naganuma, K. Mogi, and H. Yamada, “Time direction determination of asymmetric ultrashort optical pulses from second-harmonic generation autocorrelation signals,” Appl. Phys. Lett. 54(13), 1201-1202 (1989).
    [CrossRef]

2008 (2)

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

M. Anderson, T. Witting, and I. A. Walmsley, “Gold-SPIDER: spectral phase interferometry for direct electric field reconstruction utilizing sum-frequency generation from a gold surface,” J. Opt. Soc. Am. B 25(6), A13-A16 (2008).
[CrossRef]

2006 (2)

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

J. Hüve, T. Haarlammert, T. Steinbrück, J. Kutzner, G. Tsilimis, and H. Zacharias, “High-flux high harmonic soft X-ray generation up to 10 kHz repetition rate,” Opt. Commun. 266(1), 261-265 (2006).
[CrossRef]

2004 (1)

C. Chen, “Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal,” Opt. Mater. 26(4), 425-429 (2004).
[CrossRef]

2001 (1)

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond pn junction,” Science 292(5523), 1899-1901 (2001).
[CrossRef] [PubMed]

1999 (1)

1998 (3)

1997 (5)

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22(17), 1344-1346 (1997).
[CrossRef]

C. Spielmann, L. Xu, and F. Krausz, “Measurement of interferometric autocorrelations: comment,” Appl. Opt. 36(12), 2523-2525 (1997).
[CrossRef] [PubMed]

F. G. Omenetto, W. A. Schroeder, K. Boyer, J. W. Longworth, A. McPherson, and C. K. Rhodes, “Measurement of 160-fs, 248-nm pulses by two-photon fluorescence in fused-silica crystals,” Appl. Opt. 36(15), 3421-3424 (1997).
[CrossRef] [PubMed]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277-3295 (1997).
[CrossRef]

T. Feurer, A. Glass, and R. Sauerbrey, “Two-photon photoconductivity in SiC photodiodes and its application to autocorrelation measurements of femtosecond optical pulses,” Appl. Phys. B 65(2), 295-297 (1997).
[CrossRef]

1996 (2)

K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).

Y. M. Li and R. Fedosejevs, “Visible single-shot autocorrelator in BaF2 for subpicosecond KrF laser pulses,” Appl. Opt. 35(15), 2583-2586 (1996).
[CrossRef] [PubMed]

1995 (1)

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338-340 (1995).
[CrossRef]

1994 (1)

1993 (1)

1992 (2)

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett. 17(9), 658-660 (1992).
[CrossRef] [PubMed]

W. Plaß, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV- and IR pulses,” Appl. Phys. B 54, 199-201 (1992).
[CrossRef]

1991 (2)

1989 (2)

K. Naganuma, K. Mogi, and H. Yamada, “Time direction determination of asymmetric ultrashort optical pulses from second-harmonic generation autocorrelation signals,” Appl. Phys. Lett. 54(13), 1201-1202 (1989).
[CrossRef]

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25(6), 1225-1233 (1989).
[CrossRef]

1986 (1)

K. Kato, “Second-harmonic generation to 2048Å in,” IEEE J. Quantum Electron. 22(7), 1013-1014 (1986).
[CrossRef]

Anderson, M.

Azima, A.

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

Baltuska, A.

BenMoussa, A.

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

Beye, M.

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

Boyer, K.

Campos, J.

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

Chen, C.

C. Chen, “Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal,” Opt. Mater. 26(4), 425-429 (2004).
[CrossRef]

Dadap, J. I.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277-3295 (1997).
[CrossRef]

D. J. Kane, A. J. Taylor, R. Trebino, and K. W. Delong, “Single-shot measurement of the intensity and phase of a femtosecond UV laser pulse with frequency-resolved optical gating,” Opt. Lett. 19(14), 1061-1063 (1994).
[CrossRef] [PubMed]

Deppe, M.

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

Döbrich, K.

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

Downer, M. C.

Eichhorn, G.

W. Plaß, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV- and IR pulses,” Appl. Phys. B 54, 199-201 (1992).
[CrossRef]

Fedosejevs, R.

Fernsler, R.

K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).

Feurer, T.

T. Feurer, A. Glass, and R. Sauerbrey, “Two-photon photoconductivity in SiC photodiodes and its application to autocorrelation measurements of femtosecond optical pulses,” Appl. Phys. B 65(2), 295-297 (1997).
[CrossRef]

K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277-3295 (1997).
[CrossRef]

Focht, G. B.

Föhlisch, A.

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

Gaeta, A. L.

Gahl, C.

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

Glass, A.

T. Feurer, A. Glass, and R. Sauerbrey, “Two-photon photoconductivity in SiC photodiodes and its application to autocorrelation measurements of femtosecond optical pulses,” Appl. Phys. B 65(2), 295-297 (1997).
[CrossRef]

Haarlammert, T.

J. Hüve, T. Haarlammert, T. Steinbrück, J. Kutzner, G. Tsilimis, and H. Zacharias, “High-flux high harmonic soft X-ray generation up to 10 kHz repetition rate,” Opt. Commun. 266(1), 261-265 (2006).
[CrossRef]

Haenen, K.

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

Hasegawa, M.

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond pn junction,” Science 292(5523), 1899-1901 (2001).
[CrossRef] [PubMed]

Hasslinger, U.

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

Hennies, F.

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

Heuer, W.

W. Plaß, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV- and IR pulses,” Appl. Phys. B 54, 199-201 (1992).
[CrossRef]

Hochedez, J. F.

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

Hüve, J.

J. Hüve, T. Haarlammert, T. Steinbrück, J. Kutzner, G. Tsilimis, and H. Zacharias, “High-flux high harmonic soft X-ray generation up to 10 kHz repetition rate,” Opt. Commun. 266(1), 261-265 (2006).
[CrossRef]

Iaconis, C.

Imamura, S.

Jasapara, J.

Kanda, H.

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond pn junction,” Science 292(5523), 1899-1901 (2001).
[CrossRef] [PubMed]

Kane, D. J.

Kato, K.

K. Kato, “Second-harmonic generation to 2048Å in,” IEEE J. Quantum Electron. 22(7), 1013-1014 (1986).
[CrossRef]

Kobayashi, T.

Koizumi, S.

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond pn junction,” Science 292(5523), 1899-1901 (2001).
[CrossRef] [PubMed]

Krausz, F.

Kroth, U.

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

Krumbugel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277-3295 (1997).
[CrossRef]

Kutzner, J.

J. Hüve, T. Haarlammert, T. Steinbrück, J. Kutzner, G. Tsilimis, and H. Zacharias, “High-flux high harmonic soft X-ray generation up to 10 kHz repetition rate,” Opt. Commun. 266(1), 261-265 (2006).
[CrossRef]

Laubis, C.

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

Le Blanc, S. P.

Li, Y. M.

Longworth, J. W.

McPherson, A.

Melnikov, A.

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

Michelmann, K.

K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).

Mogi, K.

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25(6), 1225-1233 (1989).
[CrossRef]

K. Naganuma, K. Mogi, and H. Yamada, “Time direction determination of asymmetric ultrashort optical pulses from second-harmonic generation autocorrelation signals,” Appl. Phys. Lett. 54(13), 1201-1202 (1989).
[CrossRef]

Mortet, V.

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

Naganuma, K.

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25(6), 1225-1233 (1989).
[CrossRef]

K. Naganuma, K. Mogi, and H. Yamada, “Time direction determination of asymmetric ultrashort optical pulses from second-harmonic generation autocorrelation signals,” Appl. Phys. Lett. 54(13), 1201-1202 (1989).
[CrossRef]

Nagasono, M.

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

Nicholson, J. W.

Omenetto, F. G.

Peatross, J.

Pietzsch, A.

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

Plaß, W.

W. Plaß, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV- and IR pulses,” Appl. Phys. B 54, 199-201 (1992).
[CrossRef]

Preuss, S.

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338-340 (1995).
[CrossRef]

Pshenichnikov, M. S.

Ranka, J. K.

Reitze, D. H.

Rhodes, C. K.

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277-3295 (1997).
[CrossRef]

Richter, M.

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

Rottke, H.

W. Plaß, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV- and IR pulses,” Appl. Phys. B 54, 199-201 (1992).
[CrossRef]

Rudolph, W.

Rundquist, A.

Saito, T.

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

Sauerbrey, A. R.

Sauerbrey, R.

T. Feurer, A. Glass, and R. Sauerbrey, “Two-photon photoconductivity in SiC photodiodes and its application to autocorrelation measurements of femtosecond optical pulses,” Appl. Phys. B 65(2), 295-297 (1997).
[CrossRef]

K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).

Scholze, F.

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

Schroeder, W. A.

Schühle, U.

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

Spielmann, C.

Steinbrück, T.

J. Hüve, T. Haarlammert, T. Steinbrück, J. Kutzner, G. Tsilimis, and H. Zacharias, “High-flux high harmonic soft X-ray generation up to 10 kHz repetition rate,” Opt. Commun. 266(1), 261-265 (2006).
[CrossRef]

Streltsov, A. M.

Stuke, M.

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338-340 (1995).
[CrossRef]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277-3295 (1997).
[CrossRef]

Szabo, G.

Takagi, Y.

Taylor, A. J.

Theissen, A.

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

Trebino, R.

Tsilimis, G.

J. Hüve, T. Haarlammert, T. Steinbrück, J. Kutzner, G. Tsilimis, and H. Zacharias, “High-flux high harmonic soft X-ray generation up to 10 kHz repetition rate,” Opt. Commun. 266(1), 261-265 (2006).
[CrossRef]

Walmsley, I. A.

Watanabe, K.

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond pn junction,” Science 292(5523), 1899-1901 (2001).
[CrossRef] [PubMed]

Wiersma, D. A.

Witting, T.

Wolf, M.

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

Wurth, W.

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

Xu, L.

Yamada, H.

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25(6), 1225-1233 (1989).
[CrossRef]

K. Naganuma, K. Mogi, and H. Yamada, “Time direction determination of asymmetric ultrashort optical pulses from second-harmonic generation autocorrelation signals,” Appl. Phys. Lett. 54(13), 1201-1202 (1989).
[CrossRef]

Yoshihara, K.

Zacharias, H.

J. Hüve, T. Haarlammert, T. Steinbrück, J. Kutzner, G. Tsilimis, and H. Zacharias, “High-flux high harmonic soft X-ray generation up to 10 kHz repetition rate,” Opt. Commun. 266(1), 261-265 (2006).
[CrossRef]

W. Plaß, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV- and IR pulses,” Appl. Phys. B 54, 199-201 (1992).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (3)

K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).

W. Plaß, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV- and IR pulses,” Appl. Phys. B 54, 199-201 (1992).
[CrossRef]

T. Feurer, A. Glass, and R. Sauerbrey, “Two-photon photoconductivity in SiC photodiodes and its application to autocorrelation measurements of femtosecond optical pulses,” Appl. Phys. B 65(2), 295-297 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: Nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338-340 (1995).
[CrossRef]

K. Naganuma, K. Mogi, and H. Yamada, “Time direction determination of asymmetric ultrashort optical pulses from second-harmonic generation autocorrelation signals,” Appl. Phys. Lett. 54(13), 1201-1202 (1989).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25(6), 1225-1233 (1989).
[CrossRef]

K. Kato, “Second-harmonic generation to 2048Å in,” IEEE J. Quantum Electron. 22(7), 1013-1014 (1986).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

A. BenMoussa, U. Schühle, F. Scholze, U. Kroth, K. Haenen, T. Saito, J. Campos, S. Koizumi, C. Laubis, M. Richter, V. Mortet, A. Theissen, and J. F. Hochedez, “Radiometric characteristics of new diamond PIN photodiodes,” Meas. Sci. Technol. 17(4), 913-917 (2006).
[CrossRef]

Nat. Photonics (1)

C. Gahl, A. Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, “A femtosecond X-ray / optical cross-correlator,” Nat. Photonics 2(3), 165-169 (2008).
[CrossRef]

Opt. Commun. (1)

J. Hüve, T. Haarlammert, T. Steinbrück, J. Kutzner, G. Tsilimis, and H. Zacharias, “High-flux high harmonic soft X-ray generation up to 10 kHz repetition rate,” Opt. Commun. 266(1), 261-265 (2006).
[CrossRef]

Opt. Lett. (8)

J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, “Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement,” Opt. Lett. 16(7), 499-501 (1991).
[CrossRef] [PubMed]

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett. 17(9), 658-660 (1992).
[CrossRef] [PubMed]

D. J. Kane, A. J. Taylor, R. Trebino, and K. W. Delong, “Single-shot measurement of the intensity and phase of a femtosecond UV laser pulse with frequency-resolved optical gating,” Opt. Lett. 19(14), 1061-1063 (1994).
[CrossRef] [PubMed]

J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22(17), 1344-1346 (1997).
[CrossRef]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792-794 (1998).
[CrossRef]

A. M. Streltsov, J. K. Ranka, and A. L. Gaeta, “Femtosecond ultraviolet autocorrelation measurements based on two-photon conductivity in fused silica,” Opt. Lett. 23(10), 798-800 (1998).
[CrossRef]

J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto, and A. J. Taylor, “Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements,” Opt. Lett. 24(23), 1774-1776 (1999).
[CrossRef]

S. P. Le Blanc, G. Szabo, and A. R. Sauerbrey, “Femtosecond single-shot phase-sensitive autocorrelator for the ultraviolet,” Opt. Lett. 16(19), 1508-1510 (1991).
[CrossRef] [PubMed]

Opt. Mater. (1)

C. Chen, “Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal,” Opt. Mater. 26(4), 425-429 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277-3295 (1997).
[CrossRef]

Science (1)

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond pn junction,” Science 292(5523), 1899-1901 (2001).
[CrossRef] [PubMed]

Other (1)

N. Nikogosyan, Properties of Optical and Laser-Related Material (John Wiley and Sons, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Spectral responsivity of a diamond pin diode from the production series used in our experiments.

Fig. 2
Fig. 2

Generated photocurrent for the second harmonic (blue triangles) and the third harmonic (black squares) at different pulse energies. The lines represent the best fit for each wavelength with slopes of 1.98 for 401 nm and 1.95 for 265 nm.

Fig. 3
Fig. 3

Layout of the interferometer. M: Mirrors, BS: Beam splitter, HeNe: Helium-neon laser, 266/400 nm: Pulsed laser

Fig. 4
Fig. 4

Flowchart of the iterative algorithm used to recover the spectral phase of the pulses. FT: Fourier transform, IFT: inverse Fourier transform, shaded boxes: measured data

Fig. 5
Fig. 5

(a) Recorded interferogram at the fundamental wavelength. (b) Spectrum recovered from the interferogram with a central wavelength of 793 nm and a FWHM of 23 nm (blue dots) compared to the measurement of a commercial spectrometer (black line).

Fig. 6
Fig. 6

(a) Measured second-order autocorrelation trace at the fundamental wavelength of 793 nm. (b) Reconstruction (line) compared to the measurement (dots). Inset: Detail of the fit.

Fig. 7
Fig. 7

(a) Spectrum (red line) and spectral phase recovered using the iterative algorithm (blue line) compared to spider measurement (black dots). (b) Resulting pulse extracted from the autocorrelation.

Fig. 8
Fig. 8

(a) Spectrum (red line), target spectral phase (black dashes) and spectral phase retrieved at 30% white noise level by the iterative algorithm (blue line). (b) Resulting target pulse (red dashes) and reconstructed pulse (black line) in a logarithmic plot. Inset: reconstructed pulse in a linear plot.

Fig. 9
Fig. 9

(a) recorded autocorrelation of the Ti:sapphire second harmonic. The FWHM of 64 fs indicates a pulse width of 42 fs or 34 fs when assuming a Gaussian or a sech2 pulse shape, respectively. (b) Fit of the data (blue line) compared to the measurement (dots). Inset: detail of the fit.

Fig. 10
Fig. 10

(a) Spectrum (solid line) and spectral phase (dashed line) of the second harmonic output. (b) resulting temporal shape of the pulse.

Fig. 11
Fig. 11

(a) Autocorrelation of the third harmonic at λ 0 = 265  nm , the FWHM of 105 fs indicates a pulse duration of 69 fs for gaussian shaped pulses and 56 fs for sech2-shaped pulses. (b) Calculated trace (line) compared to the measurement (dots). Inset: Detail of the fit.

Fig. 12
Fig. 12

(a) Spectrum of the third harmonic centred around 265 nm with a width of 2.2 nm (solid line) and reconstructed spectral phase (dashed line). (b) Resulting pulse with a duration of 41 fs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β= 4 N e τ p A L  F 2

Metrics