Abstract

We study the excitation of whispering gallery modes (WGM) in dielectric nanocylinders by light transmitted through a subwavelength slit in a metallic slab. Calculations are done both by the finite elements method and using FDTD simulations. We discuss the effect of that excitation on extraordinary transmission by the slit. In this way, we show the dominant role of the WGMs over the aperture enhanced transmission as regards the resulting transmitted intensity and its concentration inside the cylinders. When sets of these particles are placed in front of the slit, like linear or bifurcated chains, with or without bends, the concentration of WGMs is controlled by designing the geometry parameters, so that these surface waves are coupled by both waveguiding of the nanocylinder eigenmodes and by scattered propagating waves. Also, the choice of the wavelength and polarization of the illumination, allows to select the excitation of either bonding or antibonding states of the field transmitted through the aperture into the particles. These resonances are further enhanced when a beam emerges from the slit due to adding a periodic corrugation in the slab.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Owen, R. K. Chang, and P.W. Barber, "Internal electric field distributions of a dielectric cylinder at resonance wavelengths," Opt. Lett. 6, 540-542 (1981).
    [CrossRef] [PubMed]
  2. J. R. Arias-González, and M. Nieto-Vesperinas, "Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogenous and inhomogenous lightwave excitation," J. Opt. Soc. Am. A 18, 657-665 (2001).
    [CrossRef]
  3. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: a poetential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004).
    [CrossRef] [PubMed]
  4. S. V. Boriskina, P. Sewell, T. M. Benson, and A. I. Nosich, "Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization," J. Opt. Soc. Am. A 21, 393-402 (2004).
    [CrossRef]
  5. C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, "Tailoring plasmons with metallic nanorod arrays," Phys. Rev. B 80, 125124 (2009).
    [CrossRef]
  6. K. J. Vahala, "Optical microcavities," Nature (London) 424, 839-846 (2003).
    [CrossRef] [PubMed]
  7. A. M. Kapitonov, and V. N. Astratov, "Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities," Opt. Lett. 32, 409-411 (2007).
    [CrossRef] [PubMed]
  8. Z. Chen, A. Taflove, and V. Backman, "Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres," Opt. Lett. 31, 389-391 (2006).
    [CrossRef] [PubMed]
  9. S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, "Efficient analysis and design of low-loss WGM coupled resonator optical waveguide bends,"  25, 2487-2494 (2009).
  10. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, "Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres," Phys. Rev. Lett. 94, 203905 (2005).
    [CrossRef] [PubMed]
  11. L. I. Deych, and O. Roslyak, "Photonic band mixing in linear chains of optically coupled microspheres," Phys. Rev. E 73, 036606 (2006).
    [CrossRef]
  12. S. Deng, W. Cai, and V. N. Astratov, "Numerical study of light propagation via WGM’s in microcylinder coupled resonator optical waveguides," Opt. Express 12, 6468-6480 (2004).
    [CrossRef] [PubMed]
  13. B. R. Johnson, "Theory of morphology-dependent resonances: shape resonances and width formulas," J. Opt. Soc. Am. A 10, 343-352 (1993).
    [CrossRef]
  14. B. R. Johnson, "Morphology-dependent resonances of a dielectric sphere on a conducting plane," J. Opt. Soc. Am. A 11, 2055-2064 (1994).
    [CrossRef]
  15. S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, "Plasmon excitations in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
    [CrossRef]
  16. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
    [CrossRef]
  17. F. J. García-Vidal, and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
    [CrossRef]
  18. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
    [CrossRef]
  19. H. J. Lezec, and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
    [CrossRef] [PubMed]
  20. N. García, and M. Nieto-Vesperinas, "Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits,"  9, 490-495 (2007).
  21. J. R. Arias-González, and M. Nieto-Vesperinas, "Near field distributions of resonant modes in small dielectric objects on flat surfaces," Opt. Lett. 25, 782-784 (2000).
    [CrossRef]
  22. H. C. van de Hulst, Light scattering by Small Particles (Dover, New York, 1981).
  23. M. K. Chin, D. Y. Chu, and S. T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,"  75, 3302-3307 (1994).
  24. S. V. Boriskina, "Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of WGM’s in symmetrical photonic molecules," Opt. Lett. 31, 338-340 (2006).
    [CrossRef] [PubMed]
  25. O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, "Large photonic strength of highly tunable resonant nanowire materials,"  9, 930-934 (2009).
  26. K. Vynck, D. Felbacq, E. Centeno, A. I. Cibuz, D. Cassagne, and B. Guizal, "Au-dielectric rod-type metamaterials at optical frequencies," Phys. Rev. Lett. 102, 133901 (2009).
    [CrossRef] [PubMed]
  27. E. D. Palik, Handbook of optical constants of solids (Academic Press, New York, 1998).
  28. C. Caloz, C. C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," Appl. Phys. 90, 5483-5486 (2001).
    [CrossRef]
  29. J. L. García-Pomar, and M. Nieto-Vesperinas, "Transmission study of prisms and slabs of lossy negative index media," Opt. Express 12, 2081-2095 (2004).
    [CrossRef] [PubMed]
  30. J. L. García-Pomar, and M. Nieto-Vesperinas, "Waveguiding, collimation and subwavelength concentration in photonic crystals," Opt. Express 13, 7997-8007 (2005).
    [CrossRef] [PubMed]
  31. N. García, and M. Bai, "Theory of transmission of light by subwavelength cylindrical holes in metallic films," Opt. Express 14, 10028-10042 (2006).
    [CrossRef] [PubMed]
  32. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
    [CrossRef] [PubMed]
  33. H. Miyazaki, and Y. Jimba "Ab initio tight-binding description of morphology-dependent resonance in a besphere," Phys. Rev. B 62, 7976-7997 (2000).
    [CrossRef]
  34. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
    [CrossRef]
  35. V. N. Astratov, J. P. Franchak, and S. P. Ashili, "Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder," Appl. Phys. Lett. 85, 5508-5510 (2004).
    [CrossRef]
  36. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T.W. Ebbesen, "Beaming light from a subwavelength aperture,"  297, 820-822 (2002).

2009

C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, "Tailoring plasmons with metallic nanorod arrays," Phys. Rev. B 80, 125124 (2009).
[CrossRef]

K. Vynck, D. Felbacq, E. Centeno, A. I. Cibuz, D. Cassagne, and B. Guizal, "Au-dielectric rod-type metamaterials at optical frequencies," Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

2007

2006

2005

J. L. García-Pomar, and M. Nieto-Vesperinas, "Waveguiding, collimation and subwavelength concentration in photonic crystals," Opt. Express 13, 7997-8007 (2005).
[CrossRef] [PubMed]

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, "Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres," Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

2004

2003

K. J. Vahala, "Optical microcavities," Nature (London) 424, 839-846 (2003).
[CrossRef] [PubMed]

2002

F. J. García-Vidal, and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

2001

C. Caloz, C. C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," Appl. Phys. 90, 5483-5486 (2001).
[CrossRef]

J. R. Arias-González, and M. Nieto-Vesperinas, "Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogenous and inhomogenous lightwave excitation," J. Opt. Soc. Am. A 18, 657-665 (2001).
[CrossRef]

2000

J. R. Arias-González, and M. Nieto-Vesperinas, "Near field distributions of resonant modes in small dielectric objects on flat surfaces," Opt. Lett. 25, 782-784 (2000).
[CrossRef]

H. Miyazaki, and Y. Jimba "Ab initio tight-binding description of morphology-dependent resonance in a besphere," Phys. Rev. B 62, 7976-7997 (2000).
[CrossRef]

1999

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

1994

1993

1981

Algra, R. E.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, "Large photonic strength of highly tunable resonant nanowire materials,"  9, 930-934 (2009).

Almpanis, E.

C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, "Tailoring plasmons with metallic nanorod arrays," Phys. Rev. B 80, 125124 (2009).
[CrossRef]

Arias-González, J. R.

Ashili, S. P.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, "Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder," Appl. Phys. Lett. 85, 5508-5510 (2004).
[CrossRef]

Astratov, V. N.

Backman, V.

Bai, M.

Bakkers, E. P. A. M.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, "Large photonic strength of highly tunable resonant nanowire materials,"  9, 930-934 (2009).

Barber, P.W.

Bayer, M.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

Benson, T. M.

Blanco, L. A.

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, "Plasmon excitations in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
[CrossRef]

Boriskina, S. V.

Cai, W.

Caloz, C.

C. Caloz, C. C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," Appl. Phys. 90, 5483-5486 (2001).
[CrossRef]

Cassagne, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cibuz, D. Cassagne, and B. Guizal, "Au-dielectric rod-type metamaterials at optical frequencies," Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

Centeno, E.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cibuz, D. Cassagne, and B. Guizal, "Au-dielectric rod-type metamaterials at optical frequencies," Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

Chang, C. C.

C. Caloz, C. C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," Appl. Phys. 90, 5483-5486 (2001).
[CrossRef]

Chang, R. K.

Chen, Z.

Chin, M. K.

M. K. Chin, D. Y. Chu, and S. T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,"  75, 3302-3307 (1994).

Chu, D. Y.

M. K. Chin, D. Y. Chu, and S. T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,"  75, 3302-3307 (1994).

Cibuz, A. I.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cibuz, D. Cassagne, and B. Guizal, "Au-dielectric rod-type metamaterials at optical frequencies," Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T.W. Ebbesen, "Beaming light from a subwavelength aperture,"  297, 820-822 (2002).

Deng, S.

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T.W. Ebbesen, "Beaming light from a subwavelength aperture,"  297, 820-822 (2002).

Deych, L. I.

L. I. Deych, and O. Roslyak, "Photonic band mixing in linear chains of optically coupled microspheres," Phys. Rev. E 73, 036606 (2006).
[CrossRef]

Diedenhofen, S. L.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, "Large photonic strength of highly tunable resonant nanowire materials,"  9, 930-934 (2009).

Dremin, A. A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Ebbesen, T.W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T.W. Ebbesen, "Beaming light from a subwavelength aperture,"  297, 820-822 (2002).

Felbacq, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cibuz, D. Cassagne, and B. Guizal, "Au-dielectric rod-type metamaterials at optical frequencies," Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Forchel, A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

Franchak, J. P.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, "Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder," Appl. Phys. Lett. 85, 5508-5510 (2004).
[CrossRef]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

García, N.

García-Pomar, J. L.

García-Vidal, F. J.

F. J. García-Vidal, and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T.W. Ebbesen, "Beaming light from a subwavelength aperture,"  297, 820-822 (2002).

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Gómez Rivas, J.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, "Large photonic strength of highly tunable resonant nanowire materials,"  9, 930-934 (2009).

Guizal, B.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cibuz, D. Cassagne, and B. Guizal, "Au-dielectric rod-type metamaterials at optical frequencies," Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

Gutbrod, T.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

Hara, Y.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, "Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres," Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

Ho, S. T.

M. K. Chin, D. Y. Chu, and S. T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,"  75, 3302-3307 (1994).

Itoh, T.

C. Caloz, C. C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," Appl. Phys. 90, 5483-5486 (2001).
[CrossRef]

Jimba, Y.

H. Miyazaki, and Y. Jimba "Ab initio tight-binding description of morphology-dependent resonance in a besphere," Phys. Rev. B 62, 7976-7997 (2000).
[CrossRef]

Johnson, B. R.

Kaas, B. C.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, "Large photonic strength of highly tunable resonant nanowire materials,"  9, 930-934 (2009).

Kapitonov, A. M.

Knipp, P. A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

Kulakovskii, V. D.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

Kuwata-Gonokami, M.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, "Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres," Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

Lagendijk, A.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, "Large photonic strength of highly tunable resonant nanowire materials,"  9, 930-934 (2009).

Lezec, H. J.

H. J. Lezec, and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T.W. Ebbesen, "Beaming light from a subwavelength aperture,"  297, 820-822 (2002).

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T.W. Ebbesen, "Beaming light from a subwavelength aperture,"  297, 820-822 (2002).

Martín-Moreno, L.

F. J. García-Vidal, and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T.W. Ebbesen, "Beaming light from a subwavelength aperture,"  297, 820-822 (2002).

Miyazaki, H.

H. Miyazaki, and Y. Jimba "Ab initio tight-binding description of morphology-dependent resonance in a besphere," Phys. Rev. B 62, 7976-7997 (2000).
[CrossRef]

Mukaiyama, T.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, "Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres," Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

Muskens, O. L.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, "Large photonic strength of highly tunable resonant nanowire materials,"  9, 930-934 (2009).

Nieto-Vesperinas, M.

Nosich, A. I.

Owen, J. F.

Papanikolaou, N.

C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, "Tailoring plasmons with metallic nanorod arrays," Phys. Rev. B 80, 125124 (2009).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Pishko, S. V.

S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, "Efficient analysis and design of low-loss WGM coupled resonator optical waveguide bends,"  25, 2487-2494 (2009).

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Reinecke, T. L.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

Reithmaier, J. P.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

Roslyak, O.

L. I. Deych, and O. Roslyak, "Photonic band mixing in linear chains of optically coupled microspheres," Phys. Rev. E 73, 036606 (2006).
[CrossRef]

Sburlan, S. E.

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, "Plasmon excitations in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
[CrossRef]

Sewell, P.

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Stefanou, N.

C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, "Tailoring plasmons with metallic nanorod arrays," Phys. Rev. B 80, 125124 (2009).
[CrossRef]

Taflove, A.

Takeda, K.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, "Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres," Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

Thio, T.

H. J. Lezec, and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Tserkezis, C.

C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, "Tailoring plasmons with metallic nanorod arrays," Phys. Rev. B 80, 125124 (2009).
[CrossRef]

Vahala, K. J.

K. J. Vahala, "Optical microcavities," Nature (London) 424, 839-846 (2003).
[CrossRef] [PubMed]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Vynck, K.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cibuz, D. Cassagne, and B. Guizal, "Au-dielectric rod-type metamaterials at optical frequencies," Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

Appl. Phys.

C. Caloz, C. C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," Appl. Phys. 90, 5483-5486 (2001).
[CrossRef]

Appl. Phys. Lett.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, "Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder," Appl. Phys. Lett. 85, 5508-5510 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Nature (London)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998).
[CrossRef]

K. J. Vahala, "Optical microcavities," Nature (London) 424, 839-846 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, "Tailoring plasmons with metallic nanorod arrays," Phys. Rev. B 80, 125124 (2009).
[CrossRef]

F. J. García-Vidal, and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002).
[CrossRef]

S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, "Plasmon excitations in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006).
[CrossRef]

H. Miyazaki, and Y. Jimba "Ab initio tight-binding description of morphology-dependent resonance in a besphere," Phys. Rev. B 62, 7976-7997 (2000).
[CrossRef]

Phys. Rev. E

L. I. Deych, and O. Roslyak, "Photonic band mixing in linear chains of optically coupled microspheres," Phys. Rev. E 73, 036606 (2006).
[CrossRef]

Phys. Rev. Lett.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, "Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres," Phys. Rev. Lett. 94, 203905 (2005).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

K. Vynck, D. Felbacq, E. Centeno, A. I. Cibuz, D. Cassagne, and B. Guizal, "Au-dielectric rod-type metamaterials at optical frequencies," Phys. Rev. Lett. 102, 133901 (2009).
[CrossRef] [PubMed]

Other

E. D. Palik, Handbook of optical constants of solids (Academic Press, New York, 1998).

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, "Large photonic strength of highly tunable resonant nanowire materials,"  9, 930-934 (2009).

H. C. van de Hulst, Light scattering by Small Particles (Dover, New York, 1981).

M. K. Chin, D. Y. Chu, and S. T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,"  75, 3302-3307 (1994).

N. García, and M. Nieto-Vesperinas, "Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits,"  9, 490-495 (2007).

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T.W. Ebbesen, "Beaming light from a subwavelength aperture,"  297, 820-822 (2002).

S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, "Efficient analysis and design of low-loss WGM coupled resonator optical waveguide bends,"  25, 2487-2494 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Transmission of a slit in a metallic slab (slab width D = 7000nm, thickness h = 705nm, slit width d = 117.5nm, refractive index n = 0.135 + i10.275) illuminated by a p-polarized plane wave. Black line: transmission of the slit alone. Red line: Transmission in presence of a dielectric cylinder (radius r = 200μm, refractive index n = 3.670 + i0.005) behind the slit at distance s = 50nm from its exit plane. These values are obtained by integrating ∣H∣ both in a 130nm × 100nm rectangular area whose bottom side coincides with the slit exit plane (left vertical axis, black line) and in the circular domain that coincides with the cylinder transversal section (right vertical axis, red line).

Fig. 2.
Fig. 2.

Variation of the electromagnetic field concentration, calculated as the integration of ∣H∣ (A/m) in the transversal section of a dielectric cylinder (refractive index n = nreal + 0.005i, radius r = 200nm) located at the exit of a metallic slab slit (refractive index n = 0.135+10.275i, slab width D = 7000nm, slab thickness h = 705nm, slit width d = 117.5nm). the illuminating radiation has either λ = 945nm (resonant wavelength for slit transmission) or λ = 750nm (black and red curves, respectively).

Fig. 3.
Fig. 3.

(a) Electric field modulus (V/m) from a slit in a metallic slab (refractive index n = 0.135 + i10.275, slab width D = 6807.41nm, slab thickness h = 1000nm, slit width d = 440nm) and s-wave illumination (λ = 919nm) with a dielectric cylinder (refractive index n = 3.670 + i0.005, radius r = 200nm) close to the slit exit. The excited mode in the cylinder is WGE 31.(b) Field modulus inside the cylinder. Isolated cylinder (no slab, black curve); cylinder at distance from aperture centre distx lay-cyl = 0nm and distances from exit plane disty lay-cyl = 0nm, 50nm, 100nm (red, green and blue curves, respectively); and at disty lay-cyl = distx lay-cyl = 100nm (cyan curve). The represented quantity against the wavelength (nm) of the incident wave is obtained by integrating ∣E∣ on the cylinder cross section (V · m). The vertical distance is measured from the cylinder lower boundary to the exit plane of the aperture, whereas the horizontal distance is from the cylinder centre to the aperture middle plane.

Fig. 4.
Fig. 4.

(a) Magnetic field modulus (A/m) in a metallic slab aperture (refractive index n = 0.135 + i10.275, slab width D = 7000nm, slab thickness h = 705nm, slit width d = 117.5nm). The incident radiation (λ = 750nm) is p-polarized. (b) Magnetic field modulus (A/m) in presence of a dielectric cylinder (refractive index n = 3.670 + i0.005, radius r = 200nm) placed at 50nm from the exit plane of the aperture. The WGH 31 mode has been excited. (c) Field modulus inside the same dielectric cylinder. Isolated cylinder (no slab, black curve); cylinder at slab-cylinder vertical distance disty lay-cyl = 0nm, 50nm, 100nm and slab-cylinder horizontal distance distx lay-cyl = 0nm (red and green curves, respectively); and at slab-cylinder distances disty lay-cyl = distx lay-cyl = 100nm (blue and cyan curves, respectively). The represented quantity against the wavelength (nm) of the incident wave is obtained by integrating ∣H∣ on the cylinder cross section (A·m). The vertical distance is measured from the cylinder lower boundary to the exit plane of the aperture, whereas the horizontal distance is from the cylinder centre to the aperture middle plane.

Fig. 5.
Fig. 5.

Field modulus inside two dielectric cylinders in front of a slab under p-polarization with the same parameters as in Fig. 4(a) and Fig. 4(b). Two isolated cylinders (no slab) at cylinder-cylinder vertical distance disty cyl-cyl = 0nm,100nm (black and red,respectively); Two cylinders and slab with slit at slab-cylinder distances disty lay-cyl = disty lay-cyl = 0nm and cylinder-cylinder distances disty cyl-cyl = 0nm,100nm (green and blue, respectively); and two cylinders at slab-cylinder distances disty lay-cyl = 100nm and distx lay-cyl = 0nm and cylinder-cylinder vertical distance disty cyl-cyl = 100nm (cyan curve). The represented quantity against the wavelength (nm) of the incident wave is obtained by integrating ∣H∣ on both cylinder cross sections (A·m). The vertical cylinder-aperture distance is measured from the cylinder surface to the exit plane of the aperture and the horizontal distance from the cylinder centre to the aperture middle plane. The vertical distance between cylinders is that of the gap between their boundaries. The peaks outside the range of the vertical scale are 2,30067 · 10-12 A · m at λ = 740nm (black curve), 7,96395 · 10-12 A · m at λ = 745nm (red curve) and 1,9489 · 10-11 A · m at λ = 745nm (cyan curve).

Fig. 6.
Fig. 6.

Magnetic field z-component (A/m) in a bifurcated chain (angle between chains at bifurcation θ = 150°, distance between cylinders distcyl-cyl = 100nm) of nine dielectric cylinders (refractive index n = 3.670 + i0.005, radius r = 200nm) in front of a slit in a metallic slab (refractive index n = 0.135 + i10.275, width D = 7000nm, thickness h = 705nm, slit width d = 117.5nm). The distance between the first cylinder and the exit plane of the aperture is distlay-cyl = 0nm. P-polarization. (a) The anti-bonding WGH 31 mode has been excited (λ = 742nm); (b) The bonding WGH 31 mode is excited (λ = 754nm); (c) The bonding-antibonding hybrid WGH 31 mode has been excited (λ = 749nm).

Fig. 7.
Fig. 7.

Magnetic field modulus (A/m) in a bifurcated chain (angle between chains at bifurcation θ = 135°, distance between cylinders distcyl-cyl = 100nm) of nine dielectric cylinders (refractive index n = 3.670 + i0.005, radius r = 200nm) in front of a slit in a metallic slab (refractive index n = 0.135 + i10.275, slab width D = 7000nm, slab thickness h = 705nm, slit width d = 117.5nm). The distance between the first cylinder and the exit plane of the aperture is distlay-cyl = 0nm. The WGH 31 mode has been excited (λ = 750nm, p-polarization).

Fig. 8.
Fig. 8.

FDTD simulation. z-component of magnetic field (A/m) at 3μm (in ct units) in a closed circuit of eight cylinders (refractive index n : 3.670 + i0.005, radius r = 200nm) in front of a metallic aperture (refractive index n = 0.135 + i10.275, width D = 7000nm, thickness h = 705nm, slit width d = 117.5nm) under p-polarization (λ = 750nm); (angle between chains at bifurcation θ 1 = 135°, elbow angle θ 2 = 45°, distcyl-cyl = 200nm). (a) The WGH 31 mode has been excited in the first cylinder and begins to scatter light into free space, and later reaches the next cylinders. (b) The stationary WGH 31 mode is now completely established in the cylinders and the transmitted field is almost totally concentrated inside them.

Fig. 9.
Fig. 9.

Finite element method simulation in the same cylinder rhombus of Fig. 8. Now the metallic aperture is made in a corrugated slab (refractive index n = 0.135 + i10.275, width D = 8113.1nm, thickness h = 540.9nm, slit width d = 72.1nm, corrugation period P = 901.4nm, corrugation depth A = 108.2nm) and illumination: λ = 945nm, p-polarization. The WGH 21 mode has been excited.

Metrics