Abstract

We report the optical injection modulation of semiconductor lasers by intra-cavity stimulated Raman scattering. This mechanism manifests itself as sharply enhanced modulation bandwidth in InAs/InGaAlAs/InP quantum-dash lasers when the injected photons are 33 ± 3 meV more energetic than the lasing photons. Raman scattering measurements on the quantum-dash structure and rate equation models strongly support direct gain modulation by stimulated Raman scattering. We believe this new bandwidth enhancement mechanism may have important applications in optical communication and signal processing.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, L. F. Lester, and K. J. Malloy, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
    [CrossRef]
  2. D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy,” Electron. Lett. 45(1), 50–51 (2009).
    [CrossRef]
  3. R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002).
    [CrossRef]
  4. B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. W. K. Liu, G. T. Dang, and W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1230–1238 (2008).
    [CrossRef]
  5. S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
    [CrossRef]
  6. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
    [CrossRef]
  7. B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
    [CrossRef]
  8. Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65-μm InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42, 1224–1232 (2006).
    [CrossRef]
  9. H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, and W. H. Chang, “Ultra-broad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91(11), 111116 (2007).
    [CrossRef]
  10. B. S. Ooi, T. K. Ong, and O. Gunawan, “Multiple-wavelength integration in InGaAs–InGaAsP structures using pulsed laser irradiation-induced quantum-well intermixing,” IEEE J. Quantum Electron. 40(5), 481–490 (2004).
    [CrossRef]
  11. N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 5, 563–571 (2009).
  12. C. Chen, S. Halder, B. S. Ooi, and J. C. M. Hwang, “Intrinsic response of quantum dash lasers under optical modulation,” Proc. IEEE Lasers Electro-optical Soc. Annual Meet., 471–472 (2008).
  13. C. B. Su, J. Eom, C. H. Lange, C. B. Kim, R. B. Lauer, W. C. Rideout, and J. S. Lacourse, “Characterization of the dynamics of semiconductor-lasers using optical modulation,” IEEE J. Quantum Electron. 28(1), 118–127 (1992).
    [CrossRef]
  14. T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534 (1999).
    [CrossRef]
  15. L. Sirleto, M. A. Ferrara, I. Rendina, S. N. Basu, J. Warga, R. Li, and L. D. Negro, “Enhanced stimulated Raman scattering in silicon nanocrystals embedded in silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(25), 251104 (2008).
    [CrossRef]
  16. J. Hu, B. S. Marks, and C. R. Menyuk, “Flat-gain fiber Raman amplifiers using equally spaced pumps,” J. Lightwave Technol. 22(6), 1519–1522 (2004).
    [CrossRef]
  17. C. Chen, Y. Wang, C. L. Tan, H. S. Djie, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “Effects of Intermixing on Gain and Alpha Factors of Quantum-Dash Lasers,” IEEE Photon. Technol. Lett. 20(19), 1654–1656 (2008).
    [CrossRef]
  18. T. Tanabe, K. Suto, T. Saito, T. Kimura, Y. Oyama, and J. Nishizawa, “Characteristics of time-gated Raman amplification in GaP–AlGaP semiconductor waveguides,” Appl. Phys. Lett. 93, 43–45 (2003).
  19. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003).
    [CrossRef] [PubMed]

2009 (3)

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy,” Electron. Lett. 45(1), 50–51 (2009).
[CrossRef]

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 5, 563–571 (2009).

2008 (4)

L. Sirleto, M. A. Ferrara, I. Rendina, S. N. Basu, J. Warga, R. Li, and L. D. Negro, “Enhanced stimulated Raman scattering in silicon nanocrystals embedded in silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(25), 251104 (2008).
[CrossRef]

C. Chen, Y. Wang, C. L. Tan, H. S. Djie, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “Effects of Intermixing on Gain and Alpha Factors of Quantum-Dash Lasers,” IEEE Photon. Technol. Lett. 20(19), 1654–1656 (2008).
[CrossRef]

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. W. K. Liu, G. T. Dang, and W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1230–1238 (2008).
[CrossRef]

2007 (2)

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, and W. H. Chang, “Ultra-broad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91(11), 111116 (2007).
[CrossRef]

2006 (1)

Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65-μm InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42, 1224–1232 (2006).
[CrossRef]

2004 (2)

B. S. Ooi, T. K. Ong, and O. Gunawan, “Multiple-wavelength integration in InGaAs–InGaAsP structures using pulsed laser irradiation-induced quantum-well intermixing,” IEEE J. Quantum Electron. 40(5), 481–490 (2004).
[CrossRef]

J. Hu, B. S. Marks, and C. R. Menyuk, “Flat-gain fiber Raman amplifiers using equally spaced pumps,” J. Lightwave Technol. 22(6), 1519–1522 (2004).
[CrossRef]

2003 (2)

T. Tanabe, K. Suto, T. Saito, T. Kimura, Y. Oyama, and J. Nishizawa, “Characteristics of time-gated Raman amplification in GaP–AlGaP semiconductor waveguides,” Appl. Phys. Lett. 93, 43–45 (2003).

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003).
[CrossRef] [PubMed]

2002 (1)

R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002).
[CrossRef]

2001 (1)

R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, L. F. Lester, and K. J. Malloy, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

1999 (1)

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534 (1999).
[CrossRef]

1992 (1)

C. B. Su, J. Eom, C. H. Lange, C. B. Kim, R. B. Lauer, W. C. Rideout, and J. S. Lacourse, “Characterization of the dynamics of semiconductor-lasers using optical modulation,” IEEE J. Quantum Electron. 28(1), 118–127 (1992).
[CrossRef]

Accard, A.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Azouigui, S.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

Basu, S. N.

L. Sirleto, M. A. Ferrara, I. Rendina, S. N. Basu, J. Warga, R. Li, and L. D. Negro, “Enhanced stimulated Raman scattering in silicon nanocrystals embedded in silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(25), 251104 (2008).
[CrossRef]

Batte, T.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy,” Electron. Lett. 45(1), 50–51 (2009).
[CrossRef]

Bhattacharya, P.

Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65-μm InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42, 1224–1232 (2006).
[CrossRef]

Brenot, R.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Calligaro, M.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

Carbonnelle, M.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

Chang, W. H.

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. W. K. Liu, G. T. Dang, and W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1230–1238 (2008).
[CrossRef]

C. Chen, Y. Wang, C. L. Tan, H. S. Djie, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “Effects of Intermixing on Gain and Alpha Factors of Quantum-Dash Lasers,” IEEE Photon. Technol. Lett. 20(19), 1654–1656 (2008).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, and W. H. Chang, “Ultra-broad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91(11), 111116 (2007).
[CrossRef]

Chen, C.

C. Chen, Y. Wang, C. L. Tan, H. S. Djie, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “Effects of Intermixing on Gain and Alpha Factors of Quantum-Dash Lasers,” IEEE Photon. Technol. Lett. 20(19), 1654–1656 (2008).
[CrossRef]

Chuang, S. L.

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534 (1999).
[CrossRef]

Claps, R.

Dagens, B.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Dang, G. T.

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. W. K. Liu, G. T. Dang, and W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1230–1238 (2008).
[CrossRef]

C. Chen, Y. Wang, C. L. Tan, H. S. Djie, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “Effects of Intermixing on Gain and Alpha Factors of Quantum-Dash Lasers,” IEEE Photon. Technol. Lett. 20(19), 1654–1656 (2008).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, and W. H. Chang, “Ultra-broad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91(11), 111116 (2007).
[CrossRef]

Dehaese, O.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy,” Electron. Lett. 45(1), 50–51 (2009).
[CrossRef]

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

Dernazaretian, C.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

Derouin, E.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Dijk, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Dimitropoulos, D.

Djie, H. S.

C. Chen, Y. Wang, C. L. Tan, H. S. Djie, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “Effects of Intermixing on Gain and Alpha Factors of Quantum-Dash Lasers,” IEEE Photon. Technol. Lett. 20(19), 1654–1656 (2008).
[CrossRef]

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. W. K. Liu, G. T. Dang, and W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1230–1238 (2008).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, and W. H. Chang, “Ultra-broad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91(11), 111116 (2007).
[CrossRef]

Dontabactouny, M.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy,” Electron. Lett. 45(1), 50–51 (2009).
[CrossRef]

Drisse, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Duan, G. H.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

Duan, G.-H.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Eom, J.

C. B. Su, J. Eom, C. H. Lange, C. B. Kim, R. B. Lauer, W. C. Rideout, and J. S. Lacourse, “Characterization of the dynamics of semiconductor-lasers using optical modulation,” IEEE J. Quantum Electron. 28(1), 118–127 (1992).
[CrossRef]

Even, J.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy,” Electron. Lett. 45(1), 50–51 (2009).
[CrossRef]

Fang, X. M.

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. W. K. Liu, G. T. Dang, and W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1230–1238 (2008).
[CrossRef]

Fang, X.-M.

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, and W. H. Chang, “Ultra-broad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91(11), 111116 (2007).
[CrossRef]

Fastenau, J. M.

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. W. K. Liu, G. T. Dang, and W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1230–1238 (2008).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, and W. H. Chang, “Ultra-broad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91(11), 111116 (2007).
[CrossRef]

Ferrara, M. A.

L. Sirleto, M. A. Ferrara, I. Rendina, S. N. Basu, J. Warga, R. Li, and L. D. Negro, “Enhanced stimulated Raman scattering in silicon nanocrystals embedded in silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(25), 251104 (2008).
[CrossRef]

Forchel, A.

R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002).
[CrossRef]

Gold, D.

R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002).
[CrossRef]

Gouezigou, O. L.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Grillot, F.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy,” Electron. Lett. 45(1), 50–51 (2009).
[CrossRef]

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 5, 563–571 (2009).

Gunawan, O.

B. S. Ooi, T. K. Ong, and O. Gunawan, “Multiple-wavelength integration in InGaAs–InGaAsP structures using pulsed laser irradiation-induced quantum-well intermixing,” IEEE J. Quantum Electron. 40(5), 481–490 (2004).
[CrossRef]

Han, Y.

Hess, K.

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534 (1999).
[CrossRef]

Hu, J.

Hwang, J. C. M.

C. Chen, Y. Wang, C. L. Tan, H. S. Djie, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “Effects of Intermixing on Gain and Alpha Factors of Quantum-Dash Lasers,” IEEE Photon. Technol. Lett. 20(19), 1654–1656 (2008).
[CrossRef]

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. W. K. Liu, G. T. Dang, and W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1230–1238 (2008).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, and W. H. Chang, “Ultra-broad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91(11), 111116 (2007).
[CrossRef]

Jalali, B.

Jin, X.

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534 (1999).
[CrossRef]

Keating, T.

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534 (1999).
[CrossRef]

Kim, C. B.

C. B. Su, J. Eom, C. H. Lange, C. B. Kim, R. B. Lauer, W. C. Rideout, and J. S. Lacourse, “Characterization of the dynamics of semiconductor-lasers using optical modulation,” IEEE J. Quantum Electron. 28(1), 118–127 (1992).
[CrossRef]

Kimura, T.

T. Tanabe, K. Suto, T. Saito, T. Kimura, Y. Oyama, and J. Nishizawa, “Characteristics of time-gated Raman amplification in GaP–AlGaP semiconductor waveguides,” Appl. Phys. Lett. 93, 43–45 (2003).

Kovanis, V.

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 5, 563–571 (2009).

Krakowski, M.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

Lacourse, J. S.

C. B. Su, J. Eom, C. H. Lange, C. B. Kim, R. B. Lauer, W. C. Rideout, and J. S. Lacourse, “Characterization of the dynamics of semiconductor-lasers using optical modulation,” IEEE J. Quantum Electron. 28(1), 118–127 (1992).
[CrossRef]

Landreau, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Lange, C. H.

C. B. Su, J. Eom, C. H. Lange, C. B. Kim, R. B. Lauer, W. C. Rideout, and J. S. Lacourse, “Characterization of the dynamics of semiconductor-lasers using optical modulation,” IEEE J. Quantum Electron. 28(1), 118–127 (1992).
[CrossRef]

Lauer, R. B.

C. B. Su, J. Eom, C. H. Lange, C. B. Kim, R. B. Lauer, W. C. Rideout, and J. S. Lacourse, “Characterization of the dynamics of semiconductor-lasers using optical modulation,” IEEE J. Quantum Electron. 28(1), 118–127 (1992).
[CrossRef]

Le Gouezigou, L.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

Le Gouezigou, O.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

Lelarge, F.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Lester, L. F.

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 5, 563–571 (2009).

R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, L. F. Lester, and K. J. Malloy, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

Li, R.

L. Sirleto, M. A. Ferrara, I. Rendina, S. N. Basu, J. Warga, R. Li, and L. D. Negro, “Enhanced stimulated Raman scattering in silicon nanocrystals embedded in silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(25), 251104 (2008).
[CrossRef]

Liu, A. W. K.

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. W. K. Liu, G. T. Dang, and W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1230–1238 (2008).
[CrossRef]

Liu, W. K.

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, and W. H. Chang, “Ultra-broad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91(11), 111116 (2007).
[CrossRef]

Loualiche, S.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy,” Electron. Lett. 45(1), 50–51 (2009).
[CrossRef]

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

Make, D.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Malloy, K. J.

R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, L. F. Lester, and K. J. Malloy, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

Marks, B. S.

Martinez, A.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

Menyuk, C. R.

Merghem, K.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

Mi, Z.

Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65-μm InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42, 1224–1232 (2006).
[CrossRef]

Naderi, N.

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 5, 563–571 (2009).

Negro, L. D.

L. Sirleto, M. A. Ferrara, I. Rendina, S. N. Basu, J. Warga, R. Li, and L. D. Negro, “Enhanced stimulated Raman scattering in silicon nanocrystals embedded in silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(25), 251104 (2008).
[CrossRef]

Newell, T. C.

R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, L. F. Lester, and K. J. Malloy, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

Nishizawa, J.

T. Tanabe, K. Suto, T. Saito, T. Kimura, Y. Oyama, and J. Nishizawa, “Characteristics of time-gated Raman amplification in GaP–AlGaP semiconductor waveguides,” Appl. Phys. Lett. 93, 43–45 (2003).

Ong, T. K.

B. S. Ooi, T. K. Ong, and O. Gunawan, “Multiple-wavelength integration in InGaAs–InGaAsP structures using pulsed laser irradiation-induced quantum-well intermixing,” IEEE J. Quantum Electron. 40(5), 481–490 (2004).
[CrossRef]

Ooi, B. S.

C. Chen, Y. Wang, C. L. Tan, H. S. Djie, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “Effects of Intermixing on Gain and Alpha Factors of Quantum-Dash Lasers,” IEEE Photon. Technol. Lett. 20(19), 1654–1656 (2008).
[CrossRef]

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. W. K. Liu, G. T. Dang, and W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1230–1238 (2008).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, and W. H. Chang, “Ultra-broad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91(11), 111116 (2007).
[CrossRef]

B. S. Ooi, T. K. Ong, and O. Gunawan, “Multiple-wavelength integration in InGaAs–InGaAsP structures using pulsed laser irradiation-induced quantum-well intermixing,” IEEE J. Quantum Electron. 40(5), 481–490 (2004).
[CrossRef]

Oyama, Y.

T. Tanabe, K. Suto, T. Saito, T. Kimura, Y. Oyama, and J. Nishizawa, “Characteristics of time-gated Raman amplification in GaP–AlGaP semiconductor waveguides,” Appl. Phys. Lett. 93, 43–45 (2003).

Piron, R.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy,” Electron. Lett. 45(1), 50–51 (2009).
[CrossRef]

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

Pochet, M.

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 5, 563–571 (2009).

Poingt, F.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Pommereau, F.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Provost, J. G.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

Provost, J.-G.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Qin, Z.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

Raghunathan, V.

Ramdane, A.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

Reithmaier, J. P.

R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002).
[CrossRef]

Renaudier, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Rendina, I.

L. Sirleto, M. A. Ferrara, I. Rendina, S. N. Basu, J. Warga, R. Li, and L. D. Negro, “Enhanced stimulated Raman scattering in silicon nanocrystals embedded in silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(25), 251104 (2008).
[CrossRef]

Resneau, P.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

Rideout, W. C.

C. B. Su, J. Eom, C. H. Lange, C. B. Kim, R. B. Lauer, W. C. Rideout, and J. S. Lacourse, “Characterization of the dynamics of semiconductor-lasers using optical modulation,” IEEE J. Quantum Electron. 28(1), 118–127 (1992).
[CrossRef]

Rousseau, B.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Saito, T.

T. Tanabe, K. Suto, T. Saito, T. Kimura, Y. Oyama, and J. Nishizawa, “Characteristics of time-gated Raman amplification in GaP–AlGaP semiconductor waveguides,” Appl. Phys. Lett. 93, 43–45 (2003).

Schwertberger, R.

R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002).
[CrossRef]

Sirleto, L.

L. Sirleto, M. A. Ferrara, I. Rendina, S. N. Basu, J. Warga, R. Li, and L. D. Negro, “Enhanced stimulated Raman scattering in silicon nanocrystals embedded in silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(25), 251104 (2008).
[CrossRef]

Stintz, A.

R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, L. F. Lester, and K. J. Malloy, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

Su, C. B.

C. B. Su, J. Eom, C. H. Lange, C. B. Kim, R. B. Lauer, W. C. Rideout, and J. S. Lacourse, “Characterization of the dynamics of semiconductor-lasers using optical modulation,” IEEE J. Quantum Electron. 28(1), 118–127 (1992).
[CrossRef]

Suto, K.

T. Tanabe, K. Suto, T. Saito, T. Kimura, Y. Oyama, and J. Nishizawa, “Characteristics of time-gated Raman amplification in GaP–AlGaP semiconductor waveguides,” Appl. Phys. Lett. 93, 43–45 (2003).

Tan, C. L.

C. Chen, Y. Wang, C. L. Tan, H. S. Djie, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “Effects of Intermixing on Gain and Alpha Factors of Quantum-Dash Lasers,” IEEE Photon. Technol. Lett. 20(19), 1654–1656 (2008).
[CrossRef]

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. W. K. Liu, G. T. Dang, and W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1230–1238 (2008).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, and W. H. Chang, “Ultra-broad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91(11), 111116 (2007).
[CrossRef]

Tanabe, T.

T. Tanabe, K. Suto, T. Saito, T. Kimura, Y. Oyama, and J. Nishizawa, “Characteristics of time-gated Raman amplification in GaP–AlGaP semiconductor waveguides,” Appl. Phys. Lett. 93, 43–45 (2003).

Tavernier, K.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy,” Electron. Lett. 45(1), 50–51 (2009).
[CrossRef]

Terry, N.

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 5, 563–571 (2009).

van Dijk, F.

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

Varangis, P. M.

R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, L. F. Lester, and K. J. Malloy, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

Wang, R. H.

R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, L. F. Lester, and K. J. Malloy, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

Wang, Y.

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. W. K. Liu, G. T. Dang, and W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1230–1238 (2008).
[CrossRef]

C. Chen, Y. Wang, C. L. Tan, H. S. Djie, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “Effects of Intermixing on Gain and Alpha Factors of Quantum-Dash Lasers,” IEEE Photon. Technol. Lett. 20(19), 1654–1656 (2008).
[CrossRef]

Warga, J.

L. Sirleto, M. A. Ferrara, I. Rendina, S. N. Basu, J. Warga, R. Li, and L. D. Negro, “Enhanced stimulated Raman scattering in silicon nanocrystals embedded in silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(25), 251104 (2008).
[CrossRef]

Wu, Y.

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, and W. H. Chang, “Ultra-broad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91(11), 111116 (2007).
[CrossRef]

Zhou, D.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy,” Electron. Lett. 45(1), 50–51 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, and W. H. Chang, “Ultra-broad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91(11), 111116 (2007).
[CrossRef]

L. Sirleto, M. A. Ferrara, I. Rendina, S. N. Basu, J. Warga, R. Li, and L. D. Negro, “Enhanced stimulated Raman scattering in silicon nanocrystals embedded in silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(25), 251104 (2008).
[CrossRef]

T. Tanabe, K. Suto, T. Saito, T. Kimura, Y. Oyama, and J. Nishizawa, “Characteristics of time-gated Raman amplification in GaP–AlGaP semiconductor waveguides,” Appl. Phys. Lett. 93, 43–45 (2003).

Electron. Lett. (1)

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy,” Electron. Lett. 45(1), 50–51 (2009).
[CrossRef]

IEEE J. Quantum Electron. (4)

Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65-μm InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42, 1224–1232 (2006).
[CrossRef]

C. B. Su, J. Eom, C. H. Lange, C. B. Kim, R. B. Lauer, W. C. Rideout, and J. S. Lacourse, “Characterization of the dynamics of semiconductor-lasers using optical modulation,” IEEE J. Quantum Electron. 28(1), 118–127 (1992).
[CrossRef]

T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534 (1999).
[CrossRef]

B. S. Ooi, T. K. Ong, and O. Gunawan, “Multiple-wavelength integration in InGaAs–InGaAsP structures using pulsed laser irradiation-induced quantum-well intermixing,” IEEE J. Quantum Electron. 40(5), 481–490 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 5, 563–571 (2009).

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. W. K. Liu, G. T. Dang, and W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1230–1238 (2008).
[CrossRef]

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008).
[CrossRef]

R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, L. F. Lester, and K. J. Malloy, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002).
[CrossRef]

C. Chen, Y. Wang, C. L. Tan, H. S. Djie, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “Effects of Intermixing on Gain and Alpha Factors of Quantum-Dash Lasers,” IEEE Photon. Technol. Lett. 20(19), 1654–1656 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Other (1)

C. Chen, S. Halder, B. S. Ooi, and J. C. M. Hwang, “Intrinsic response of quantum dash lasers under optical modulation,” Proc. IEEE Lasers Electro-optical Soc. Annual Meet., 471–472 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 4
Fig. 4

Measured (symbol) vs. modeled (curve) (a) magnitude and (b) phase response vs. frequency of a 1565-nm quantum-dash laser electrically biased at different currents and optical injection modulated at 1500 nm.

Fig. 1
Fig. 1

Measured (a) magnitude and (b) phase of the response of a 1600-nm quantum-well laser biased with 33 mA and optical injection modulated with different injection wavelengths and modulation frequencies.

Fig. 2
Fig. 2

Measured (a) magnitude and (b) phase of the response of a 1620-nm quantum-dash laser biased with 298 mA and optical injection modulated with different injection wavelengths and modulation frequencies.

Fig. 3
Fig. 3

Measured (symbol) vs. modeled (curve) (a) magnitude and (b) phase response vs. frequency of a 1565-nm quantum-dash laser electrically biased at different currents and optical injection modulated at 1490 nm.

Fig. 5
Fig. 5

Measured (symbol) vs. modeled (curve) (a) magnitude and (b) phase response vs. frequency of a 1565-nm quantum-dash laser electrically biased at different currents and optical injection modulated at 1510 nm.

Fig. 6
Fig. 6

Measured (a) z(yy)z, (b) z(xy)z, (c) z(yx)z and (d) z(xx)z Raman shift of a quantum-dash structure similar to that of the 1620-nm laser.

Fig. 7
Fig. 7

(a) Bandwidth enhancement factor R| and (b) injection-to-Raman gain ratio α/ψ as functions of the injection wavelength extracted on quantum-dash lasers.

Fig. 8
Fig. 8

Extracted (a) relaxation frequency fR 2 and (b) damping factor γ of a 1565-nm quantum-dash laser biased with different currents and optical injection modulated with different wavelengths.

Tables (1)

Tables Icon

Table 1 Types of Lasers Tested

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

M = α Γ v τ P f R 2 f R 2 f 2 + j γ f / 2 π
d N W d t = η I q V W N W τ C N W τ W + N D δ τ E
d N D d t = δ N W τ C N D τ E N D τ D v ( G + g Δ N D ) S 1 + ε S + α v S I
d S d t = Γ v ( G + g Δ N D ) S 1 + ε S S τ P + ψ S I S
M ' = [ α Γ v τ P + ψ S 0 ( τ P + 1 / 4 π 2 τ D ' f R 2 ) ] f R 2 f R 2 f 2 + j γ f / 2 π ( 1 + j 2 π τ R f )
1 / τ R = 1 / τ D ' + 4 π 2 τ P f R 2 ( 1 + α Γ v / ψ S 0 )
f R 2 = v g ' S 0 4 π 2 τ P ( 1 + ε S 0 ) ( 1 + ε v g ' τ D ' ) ψ S I 0 4 π 2 ( 1 τ D ' + v g ' S 0 1 + ε S 0 )
γ = 1 τ D ' + v g ' S 0 1 + ε S 0 + ε S 0 τ P ( 1 + ε S 0 ) ψ S I 0
d P d z = G P P + g R 2 A P P I
ψ S I = v g R P I 2 A = g R v 2 h c 2 λ S I
ψ = g R v 2 h c 2 λ .
α = B ( λ T λ )
α ψ = 2 B λ ( λ T λ ) g R v 2 h c
d ( α / ψ ) d λ 2 B ( λ T 2 λ ) g R v 2 h c .
g R = 2 B λ T v 2 h c / d ( α / ψ ) d λ | λ = λ T .

Metrics