Abstract

The 400-channel 25-GHz-spacing SOI-based planar waveguide demultiplexer employing a concave grating across C- and L-bands is proposed in this paper. For the high polarization dependence, the waveguides are designed for supporting the TE mode only. To reduce the spherical aberration of the concave grating, the values of the maximum half divergent angle of the light source and minimum effective half width of the fundamental mode of the ridge waveguide are determined. We use a design example to show the spectral characteristics of the proposed design. Simulation results show that the proposed design provides better spectral characteristics and smaller die size.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. V. Kartalopoulos, Introduction to DWDM Technology (IEEE Press, New York, 2000).
  2. K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002).
    [CrossRef]
  3. Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs," IEEE J. Sel. Top. Quantum Electron 8(6), 1090-1101 (2002).
    [CrossRef]
  4. A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
    [CrossRef]
  5. D. Dai and S. He, "Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon photonic wires," Opt. Lett. 31(13), 1988-1990 (2006).
    [CrossRef] [PubMed]
  6. K. Maru and Y. Abe, "Low-loss, flat-passband and athermal arrayed-waveguide grating multi/demultiplexer," Opt. Express 15(26), 18351-18356 (2007).
    [CrossRef] [PubMed]
  7. K. A. McGreer, "Theory of concave gratings based on a recursive definition of facet positions," Appl. Opt. 35(30), 5904-5910 (1996).
    [CrossRef] [PubMed]
  8. J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999).
    [CrossRef]
  9. Z. Shi and S. He, "A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer," IEEE J. Sel. Top. Quantum Electron 8(6), 1179-1185 (2002).
    [CrossRef]
  10. J. Brouckaert, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, "Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform," J. Lightwave Technol. 25(5), 1269-1275 (2007).
    [CrossRef]
  11. C.-T. Lin, Y.-T. Huang, and J.-Y. Huang, "Quantitative analysis of a flat-top planar waveguide demultiplexer," J. Lightwave Technol. 27(5), 552-558 (2009).
    [CrossRef]
  12. C.-T. Lin, Y.-T. Huang, J.-Y. Huang, and H.-H. Lin, "Integrated planar waveguide concave gratings for high density WDM systems," in 2005 Optical Communications Systems and Networks (OCSN 2005), pp. 98-102 (Banff, Alberta, Canada, 2005).
  13. M. C. Hutley, Diffraction Gratings (Academic Press, London, 1982).
  14. C.-T. Lin, "A Study on Design and Fabrication of Micro Concave Grating," Master’s thesis, Institute of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (2002).
  15. H. Kogelnik, "Theory of OpticalWaveguides," in Guided-Wave Optoelectronics, T. Tamir, ed., (Springer-Verlag, Berlin, Germany, 1990) Chap. 2.
  16. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23(1), 401-412 (2005).
    [CrossRef]

2009 (1)

2007 (2)

2006 (1)

2005 (1)

2002 (3)

Z. Shi and S. He, "A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer," IEEE J. Sel. Top. Quantum Electron 8(6), 1179-1185 (2002).
[CrossRef]

K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002).
[CrossRef]

Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs," IEEE J. Sel. Top. Quantum Electron 8(6), 1090-1101 (2002).
[CrossRef]

1999 (2)

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
[CrossRef]

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999).
[CrossRef]

1996 (1)

Abe, Y.

Ade, M.

K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002).
[CrossRef]

Baets, R.

Beckx, S.

Bienstman, P.

Bogaerts, W.

Brouckaert, J.

Campenhout, J. V.

Dai, D.

Dumon, P.

Erickson, L.

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999).
[CrossRef]

Goh, T.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
[CrossRef]

He, J.-J.

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999).
[CrossRef]

He, S.

D. Dai and S. He, "Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon photonic wires," Opt. Lett. 31(13), 1988-1990 (2006).
[CrossRef] [PubMed]

Z. Shi and S. He, "A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer," IEEE J. Sel. Top. Quantum Electron 8(6), 1179-1185 (2002).
[CrossRef]

Hibino, Y.

Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs," IEEE J. Sel. Top. Quantum Electron 8(6), 1090-1101 (2002).
[CrossRef]

Huang, J.-Y.

Huang, Y.-T.

Kaneko, A.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
[CrossRef]

Koteles, E. S.

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999).
[CrossRef]

Lamontagne, B.

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999).
[CrossRef]

Lin, C.-T.

Luyssaert, B.

Maru, K.

McGreer, K. A.

Ogawa, I.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
[CrossRef]

Okamoto, K.

K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002).
[CrossRef]

Shi, Z.

Z. Shi and S. He, "A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer," IEEE J. Sel. Top. Quantum Electron 8(6), 1179-1185 (2002).
[CrossRef]

Shibita, T.

K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002).
[CrossRef]

Taillaert, D.

Takada, K.

K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002).
[CrossRef]

Tanaka, T.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
[CrossRef]

Thourhout, D. V.

Wiaux, V.

Yamada, H.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
[CrossRef]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron (3)

Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs," IEEE J. Sel. Top. Quantum Electron 8(6), 1090-1101 (2002).
[CrossRef]

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999).
[CrossRef]

Z. Shi and S. He, "A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer," IEEE J. Sel. Top. Quantum Electron 8(6), 1179-1185 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999).
[CrossRef]

K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Opt. Lett. (1)

Other (5)

S. V. Kartalopoulos, Introduction to DWDM Technology (IEEE Press, New York, 2000).

C.-T. Lin, Y.-T. Huang, J.-Y. Huang, and H.-H. Lin, "Integrated planar waveguide concave gratings for high density WDM systems," in 2005 Optical Communications Systems and Networks (OCSN 2005), pp. 98-102 (Banff, Alberta, Canada, 2005).

M. C. Hutley, Diffraction Gratings (Academic Press, London, 1982).

C.-T. Lin, "A Study on Design and Fabrication of Micro Concave Grating," Master’s thesis, Institute of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (2002).

H. Kogelnik, "Theory of OpticalWaveguides," in Guided-Wave Optoelectronics, T. Tamir, ed., (Springer-Verlag, Berlin, Germany, 1990) Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic figure of the planar waveguide demultiplexer employing a concave grating.

Fig. 2.
Fig. 2.

Cross-sectional view of the ridge waveguide.

Fig. 3.
Fig. 3.

Schematic figure of the light diffracted and focused by the concave grating.

Fig. 4.
Fig. 4.

Deviation function of the approximation.

Fig. 5.
Fig. 5.

Propagation losses versus the thickness tsi of the core layer at a center wavelength of 1570 nm.

Fig. 6.
Fig. 6.

Schematic figure of the light propagating in the slab waveguide and then diffracted by the concave grating.

Fig. 7.
Fig. 7.

Cross-sectional views of the ridge waveguide and the spot size converter.

Fig. 8.
Fig. 8.

Spectral responses of 400 channel with a channel spacing of 25 GHz (0.2 nm).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

α + δ γ = α + δ α + δ σ ,
δ α = δ γ δ σ .
δ β = δ γ δ ρ .
δ α = AB R ¯ ,
δ σ = AB ¯ cos α r 1,0 ,
δ ρ = AB ¯ cos β r 2,0 .
n eff · d ( sin α + sin β ) = ,
cos α δ α + cos β δ β = 0 .
cos α R cos 2 α r 1,0 + cos β R cos 2 β r 2,0 = 0 ,
f ( δγ ) = AB AB ¯ AB = R · δγ 2 R · sin ( δγ 2 ) R · δγ .
AB ¯ max = R · 8.0 ° .
δ σ max = R · 8.0 ° · cos α r 1,0 .
δσ = λ 0 π n eff w 0 .

Metrics