Abstract

We have demonstrated a double-modulation scheme to enlarge the measurement range of Brillouin optical correlation-domain reflectometry for fiber-optic distributed strain sensing. In this scheme, the frequency of the laser output is simultaneously modulated with two different frequencies. In the experiment, 53-cm resolution and 1.5-km measurement range were simultaneously obtained. Furthermore, 27-cm resolution and 1.5-km measurement range were also simultaneously achieved when a noise-floor compensation technique was employed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
    [CrossRef] [PubMed]
  2. Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21(7), 474–476 (2009).
    [CrossRef]
  3. A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” Proc. 12th Intern. Conf. Optical Fiber Sensors, 324–327 (1997).
  4. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun,” E 76-B, 382–390 (1993).
  5. T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
    [CrossRef]
  6. Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19(23), 1910–1912 (2007).
    [CrossRef]
  7. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [CrossRef] [PubMed]
  8. Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
    [CrossRef] [PubMed]
  9. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – proposal, experiment and simulation,” IEICE Trans. Electron E 83-C, 405–412 (2000).
  10. K. Hotate and M. Tanaka, “Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering with cm-order spatial resolution – applications to smart materials,” IEICE Trans. Electron E 84-C, 1823–1828 (2001).
  11. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, California, 1995).
  12. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
    [CrossRef]
  13. T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29(15), 2219–2222 (1990).
    [CrossRef] [PubMed]
  14. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [CrossRef] [PubMed]
  15. Y. Mizuno, Z. He, and K. Hotate, “Stable entire-length measurement of fiber strain distribution by Brillouin optical correlation-domain reflectometry with polarization scrambling and noise-floor compensation,” Appl. Phys. Express 2, 062403 (2009).
    [CrossRef]
  16. Y. Ohtsuka, “Optical coherence effects on a fiber-sensing Fabry-Perot interferometer,” Appl. Opt. 21(23), 4316–4320 (1982).
    [CrossRef] [PubMed]
  17. A. W. Brown, M. D. DeMerchant, X. Bao, and T. W. Bremner, “Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method,” J. Lightwave Technol. 17(7), 1179–1183 (1999).
    [CrossRef]
  18. M. P. Song and B. Zhao, “Accuracy enhancement in Brillouin scattering distributed temperature sensor based on Hilbert transform,” Opt. Commun. 250(4-6), 252–257 (2005).
    [CrossRef]

2009 (3)

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21(7), 474–476 (2009).
[CrossRef]

Y. Mizuno, Z. He, and K. Hotate, “Stable entire-length measurement of fiber strain distribution by Brillouin optical correlation-domain reflectometry with polarization scrambling and noise-floor compensation,” Appl. Phys. Express 2, 062403 (2009).
[CrossRef]

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19(23), 1910–1912 (2007).
[CrossRef]

2006 (1)

2005 (1)

M. P. Song and B. Zhao, “Accuracy enhancement in Brillouin scattering distributed temperature sensor based on Hilbert transform,” Opt. Commun. 250(4-6), 252–257 (2005).
[CrossRef]

2001 (1)

K. Hotate and M. Tanaka, “Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering with cm-order spatial resolution – applications to smart materials,” IEICE Trans. Electron E 84-C, 1823–1828 (2001).

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – proposal, experiment and simulation,” IEICE Trans. Electron E 83-C, 405–412 (2000).

1999 (1)

1993 (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun,” E 76-B, 382–390 (1993).

1990 (1)

1989 (2)

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

1982 (1)

Adachi, S.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19(23), 1910–1912 (2007).
[CrossRef]

Bao, X.

Bremner, T. W.

Brown, A. W.

Chen, L.

DeMerchant, M. D.

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun,” E 76-B, 382–390 (1993).

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – proposal, experiment and simulation,” IEICE Trans. Electron E 83-C, 405–412 (2000).

He, Z.

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
[CrossRef] [PubMed]

Y. Mizuno, Z. He, and K. Hotate, “Stable entire-length measurement of fiber strain distribution by Brillouin optical correlation-domain reflectometry with polarization scrambling and noise-floor compensation,” Appl. Phys. Express 2, 062403 (2009).
[CrossRef]

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21(7), 474–476 (2009).
[CrossRef]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[CrossRef] [PubMed]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun,” E 76-B, 382–390 (1993).

T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29(15), 2219–2222 (1990).
[CrossRef] [PubMed]

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

Hotate, K.

Y. Mizuno, Z. He, and K. Hotate, “Stable entire-length measurement of fiber strain distribution by Brillouin optical correlation-domain reflectometry with polarization scrambling and noise-floor compensation,” Appl. Phys. Express 2, 062403 (2009).
[CrossRef]

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
[CrossRef] [PubMed]

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21(7), 474–476 (2009).
[CrossRef]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[CrossRef] [PubMed]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

K. Hotate and M. Tanaka, “Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering with cm-order spatial resolution – applications to smart materials,” IEICE Trans. Electron E 84-C, 1823–1828 (2001).

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – proposal, experiment and simulation,” IEICE Trans. Electron E 83-C, 405–412 (2000).

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun,” E 76-B, 382–390 (1993).

Koyamada, Y.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19(23), 1910–1912 (2007).
[CrossRef]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun,” E 76-B, 382–390 (1993).

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun,” E 76-B, 382–390 (1993).

T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29(15), 2219–2222 (1990).
[CrossRef] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

Li, W.

Li, Y.

Mizuno, Y.

Y. Mizuno, Z. He, and K. Hotate, “Stable entire-length measurement of fiber strain distribution by Brillouin optical correlation-domain reflectometry with polarization scrambling and noise-floor compensation,” Appl. Phys. Express 2, 062403 (2009).
[CrossRef]

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
[CrossRef] [PubMed]

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21(7), 474–476 (2009).
[CrossRef]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[CrossRef] [PubMed]

Ohtsuka, Y.

Sakairi, Y.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19(23), 1910–1912 (2007).
[CrossRef]

Song, K. Y.

Song, M. P.

M. P. Song and B. Zhao, “Accuracy enhancement in Brillouin scattering distributed temperature sensor based on Hilbert transform,” Opt. Commun. 250(4-6), 252–257 (2005).
[CrossRef]

Takeuchi, N.

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19(23), 1910–1912 (2007).
[CrossRef]

Tanaka, M.

K. Hotate and M. Tanaka, “Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering with cm-order spatial resolution – applications to smart materials,” IEICE Trans. Electron E 84-C, 1823–1828 (2001).

Tateda, M.

T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers,” Appl. Opt. 29(15), 2219–2222 (1990).
[CrossRef] [PubMed]

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

Zhao, B.

M. P. Song and B. Zhao, “Accuracy enhancement in Brillouin scattering distributed temperature sensor based on Hilbert transform,” Opt. Commun. 250(4-6), 252–257 (2005).
[CrossRef]

Zou, W.

Appl. Opt. (2)

Appl. Phys. Express (1)

Y. Mizuno, Z. He, and K. Hotate, “Stable entire-length measurement of fiber strain distribution by Brillouin optical correlation-domain reflectometry with polarization scrambling and noise-floor compensation,” Appl. Phys. Express 2, 062403 (2009).
[CrossRef]

E (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun,” E 76-B, 382–390 (1993).

IEEE Photon. Technol. Lett. (3)

Y. Mizuno, Z. He, and K. Hotate, “One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry,” IEEE Photon. Technol. Lett. 21(7), 474–476 (2009).
[CrossRef]

Y. Koyamada, Y. Sakairi, N. Takeuchi, and S. Adachi, “Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 19(23), 1910–1912 (2007).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989).
[CrossRef]

IEICE Trans. Electron E (2)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – proposal, experiment and simulation,” IEICE Trans. Electron E 83-C, 405–412 (2000).

K. Hotate and M. Tanaka, “Correlation-based continuous-wave technique for optical fiber distributed strain measurement using Brillouin scattering with cm-order spatial resolution – applications to smart materials,” IEICE Trans. Electron E 84-C, 1823–1828 (2001).

J. Lightwave Technol. (2)

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[CrossRef]

A. W. Brown, M. D. DeMerchant, X. Bao, and T. W. Bremner, “Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method,” J. Lightwave Technol. 17(7), 1179–1183 (1999).
[CrossRef]

Opt. Commun. (1)

M. P. Song and B. Zhao, “Accuracy enhancement in Brillouin scattering distributed temperature sensor based on Hilbert transform,” Opt. Commun. 250(4-6), 252–257 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (2)

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” Proc. 12th Intern. Conf. Optical Fiber Sensors, 324–327 (1997).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, California, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of BOCDR based on double-modulation scheme: DAQ, data acquisition; DC, direct current; EDFA, erbium-doped fiber amplifier; ESA, electrical spectrum analyzer; FUT, fiber under test; GPIB, general-purpose interface bus; PC, polarization controller; PD, photo-detector; PSCR, polarization scrambler.

Fig. 2
Fig. 2

Operating principle of double-modulation scheme.

Fig. 3
Fig. 3

Synthesized coherence functions with the modulation at (a) f0 only, (b) 4f0 only, and (c) f0 and 4f0 .

Fig. 4
Fig. 4

Measured strain-dependences of BGS (a) without and (b) with double-modulation scheme.

Fig. 5
Fig. 5

Measured distributions of (a) BGS, and (b) BFS when the double-modulation scheme was not employed.

Fig. 6
Fig. 6

Measured distributions of (a) BGS, and (b) BFS when the double-modulation scheme was employed (NR = 2845).

Fig. 7
Fig. 7

Measured distributions of (a) BGS, and (b) BFS with the double-modulation scheme when the noise-floor compensation technique was employed (NR = 5690).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d m = c 2 n f mod ,
Δ z = c Δ ν B 2 π n f mod Δ f ,
N R = d m Δ z = π Δ f Δ ν B .
f ( t ) = f c + Δ f m sin ( 2 π m f 0 t ) + Δ f 1 sin ( 2 π f 0 t ) ,
E ( t ) = exp { j Φ ( t ) } ,
Φ ( t ) = 0 t 2 π f ( t ) d t .
| γ ( τ d ) | = | lim T 1 T T 2 T 2 exp { j Φ ( t ) } exp { j Φ ( t τ d ) } d t |
= | lim T 1 T T 2 T 2 exp [ j { 2 π f c τ d + 2 Δ f m m f 0 sin ( π m f 0 τ d ) sin ( 2 π m f 0 ( t τ d 2 ) )
+ 2 Δ f 1 f 0 sin ( π f 0 τ d ) sin ( 2 π f 0 ( t τ d 2 ) ) } ] d t |
= | lim T 1 T T 2 T 2 p = J p ( 2 Δ f m m f 0 sin ( π m f 0 τ d ) ) exp { j 2 π p m f 0 ( t τ d 2 ) } q = J q ( 2 Δ f 1 f 0 sin ( π f 0 τ d ) ) exp { j 2 π q f 0 ( t τ d 2 ) } d t |
= | lim T 1 T T 2 T 2 p = q = J p ( 2 Δ f m m f 0 sin ( π m f 0 τ d ) ) J q ( 2 Δ f 1 f 0 sin ( π f 0 τ d ) ) exp { j 2 π ( p m + q ) f 0 ( t τ d 2 ) } d t |
= | p = J p ( 2 Δ f m m f 0 sin ( π m f 0 τ d ) ) J p m ( 2 Δ f 1 f 0 sin ( π f 0 τ d ) ) | ,
| γ ( τ d ) | | J 0 ( 2 Δ f m m f 0 sin ( π m f 0 τ d ) ) | | J 0 ( 2 Δ f 1 f 0 sin ( π f 0 τ d ) ) | ,

Metrics