Abstract

Silver lenses having super-resolution are analyzed in terms of antisymmetric modes of surface plasmon which have the ability to amplify evanescent waves in UV region. Antisymmetric surface plasmon modes excited by subwavelength grating enhances the resolution and contrast of silver superlens. By using a 20 nm-thick silver superlens, the half-pitch resolution of ~ λ0/8 can be achieved with good contrast at a free space wavelength of 435 nm. The resolution of silver superlens can also be improved using shorter illumination wavelength. We show that the thinner the lens, the better the imaging ability of the silver superlens due to the excitation of antisymmetric surface plasmon modes of higher propagation wave vectors. The thickness of lens is varied from 20 to 40 nm in a three layer system, SiO2-Ag-SiO2. Obtained results illustrate that practical application for patterning periodic structures with good contrast and penetration depth can be achieved by using antisymmetric surface plasmon modes.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  2. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and μ," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  3. D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
    [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  5. Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
    [CrossRef]
  6. N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
    [CrossRef] [PubMed]
  7. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
    [CrossRef]
  8. G. I. Stegeman, J. J. Burke, and D. G. Hall, "Surface-polaritonlike waves guided by thin, lossy metal films," Opt. Lett. 8,383-385 (1983).
    [CrossRef] [PubMed]
  9. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
    [CrossRef]
  10. X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 12, 3055-3065 (2004).
    [CrossRef] [PubMed]
  11. R. J. Blaikie and S. J. McNab, "Evanescent interferometric lithography," Appl. Opt. 40, 1692-1698 (2001).
    [CrossRef]
  12. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4,1085-1088 (2004).
    [CrossRef]
  13. Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
    [CrossRef] [PubMed]
  14. A. D. Rakic, A. B. Djrisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for verticalcavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).
    [CrossRef]
  15. Handbook of Optical Constants of Solids, edited by E. Palik (Academic Press, New York, 1985).
  16. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Planar metal plasmon waveguides: frequencydependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005).
    [CrossRef]
  17. C. Reale, "Optical constants of vacuum deposited thin metal films in the near infrared," Infrared Phys. 10, 175-181 (1970).
    [CrossRef]
  18. M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "In situ and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129-137 (1990).
    [CrossRef]
  19. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-s. Kim, J. T. Kim, and J. J. Ju, "Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths," J. Appl. Phys. 103, 073713 (2008).
    [CrossRef]
  20. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
    [CrossRef]
  21. N. Fang and X. Zhang,"Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
    [CrossRef]
  22. C. M. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, "Image fidelity for single- and multi-layer silver superlenses," J. Opt. Soc. Am. A 25, 911-918 (2008).
    [CrossRef]
  23. S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
    [CrossRef]
  24. http://ab-initio.mit.edu/meep
  25. R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).
  26. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

2008 (2)

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-s. Kim, J. T. Kim, and J. J. Ju, "Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths," J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

C. M. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, "Image fidelity for single- and multi-layer silver superlenses," J. Opt. Soc. Am. A 25, 911-918 (2008).
[CrossRef]

2005 (5)

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Planar metal plasmon waveguides: frequencydependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

2004 (3)

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 12, 3055-3065 (2004).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4,1085-1088 (2004).
[CrossRef]

2003 (4)

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

N. Fang and X. Zhang,"Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
[CrossRef] [PubMed]

2002 (1)

R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).

2001 (1)

2000 (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1998 (1)

1990 (1)

M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "In situ and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129-137 (1990).
[CrossRef]

1983 (1)

1981 (1)

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

1970 (1)

C. Reale, "Optical constants of vacuum deposited thin metal films in the near infrared," Infrared Phys. 10, 175-181 (1970).
[CrossRef]

1968 (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Arnold, M. D.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Planar metal plasmon waveguides: frequencydependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Blaikie, R. J.

Bones, P. J.

Burke, J. J.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Planar metal plasmon waveguides: frequencydependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4,1085-1088 (2004).
[CrossRef]

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
[CrossRef] [PubMed]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

N. Fang and X. Zhang,"Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

Fukui, M.

M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "In situ and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129-137 (1990).
[CrossRef]

Hall, D. G.

Haraguchi, M.

M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "In situ and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129-137 (1990).
[CrossRef]

Ishihara, T.

X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 12, 3055-3065 (2004).
[CrossRef] [PubMed]

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

Ju, J. J.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-s. Kim, J. T. Kim, and J. J. Ju, "Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths," J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

Kim, J. T.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-s. Kim, J. T. Kim, and J. J. Ju, "Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths," J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

Kim, J.-E.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-s. Kim, J. T. Kim, and J. J. Ju, "Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths," J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

Kim, M.-s.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-s. Kim, J. T. Kim, and J. J. Ju, "Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths," J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Lee, W.-J.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-s. Kim, J. T. Kim, and J. J. Ju, "Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths," J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

Liu, Z.

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
[CrossRef] [PubMed]

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4,1085-1088 (2004).
[CrossRef]

Luo, X.

X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 12, 3055-3065 (2004).
[CrossRef] [PubMed]

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

McNab, S. J.

R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).

R. J. Blaikie and S. J. McNab, "Evanescent interferometric lithography," Appl. Opt. 40, 1692-1698 (2001).
[CrossRef]

Melville, D. O. S.

Moore, C. M.

Park, H. Y.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-s. Kim, J. T. Kim, and J. J. Ju, "Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths," J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

Park, S.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-s. Kim, J. T. Kim, and J. J. Ju, "Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths," J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

Pendry, J. B.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Planar metal plasmon waveguides: frequencydependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Ramakrishna, S. A.

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Reale, C.

C. Reale, "Optical constants of vacuum deposited thin metal films in the near infrared," Infrared Phys. 10, 175-181 (1970).
[CrossRef]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Sarid, D.

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Schurig, D.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Shintani, Y.

M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "In situ and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129-137 (1990).
[CrossRef]

Smith, D. R.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4,1085-1088 (2004).
[CrossRef]

Stegeman, G. I.

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4,1085-1088 (2004).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Planar metal plasmon waveguides: frequencydependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Yano, M.

M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "In situ and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129-137 (1990).
[CrossRef]

Yen, T. J.

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
[CrossRef] [PubMed]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4,1085-1088 (2004).
[CrossRef]

N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
[CrossRef] [PubMed]

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

N. Fang and X. Zhang,"Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

N. Fang and X. Zhang,"Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

Infrared Phys. (1)

C. Reale, "Optical constants of vacuum deposited thin metal films in the near infrared," Infrared Phys. 10, 175-181 (1970).
[CrossRef]

J. Appl. Phys. (1)

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-s. Kim, J. T. Kim, and J. J. Ju, "Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths," J. Appl. Phys. 103, 073713 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

Microelectron. Eng. (1)

R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).

Nano Lett. (2)

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4,1085-1088 (2004).
[CrossRef]

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Planar metal plasmon waveguides: frequencydependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
[CrossRef]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Surf. Sci. (1)

M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "In situ and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129-137 (1990).
[CrossRef]

Other (3)

Handbook of Optical Constants of Solids, edited by E. Palik (Academic Press, New York, 1985).

http://ab-initio.mit.edu/meep

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Field profiles of symmetric and antisymmetric SP modes in the structure of a thin metal layer sandwiched between two dielectric media. (b) Dispersion relation of SPs on a silver film surrounded by SiO2 as a function of the thickness of silver slab. Solid and broken lines are for the antisymmetric and symmetric SP modes, respectively. Black dotted line indicates the surface plasmon resonance frequency. Leaky modes are not shown.

Fig. 2.
Fig. 2.

(a) Cross-section of the considered superlens structure. In the x-direction, the periodic boundary conditions and in the z-direction, the perfectly matched layer absorbing boundary condition are employed, respectively. Spatial distributions of the SP field (Hy) at the excitation wavelength of 435 nm for (b) 20 nm-thick Ag film with grating period of 116 nm, (c) 30 nm-thick Ag film with grating period of 154 nm and (d) 40 nm-thick Ag film with grating period of 178 nm. (e) Hy mode profile along the dotted arrow line drawn in figure (b) as a function of the distance in the z-direction. Excited Hy modes profile clearly show the antisymmetric SP mode distribution.

Fig. 3.
Fig. 3.

Image contrasts of the three silver superlenses as a function of the distance z from the silver surface. (a) Grating periods are 116, 154, and 178 nm, which respectively correspond to the propagation wave vector for the ASP mode of silver layers of 20, 30, and 40nm-thick. (b) The same 116-nm period gratings are employed for three silver layers of different thickness. Shown in the inset are the line traces of the energy density profile along the x-axis obtained with the same 116-nm period gratings which are extracted at z = 10 nm below each silver surface.

Fig. 4.
Fig. 4.

(a) Image contrast obtained with the grating period of 66 nm, corresponding to the propagation wave vector for the ASP mode of 20 nm-thick silver lens, at the excitation wavelength of 387.5 nm. The line traces of the energy density profile as a function of z are shown in the inset. (b) Spatial distribution of the SP field Ex. Ex depicts the profile of the ASP mode as those shown in Fig. 1(b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V = ED max ED min ED max + ED min ,

Metrics