Abstract

In this work micro-Raman scattering experiments have been performed in LiNbO3:Tm3+ samples with waveguides fabricated by Zn2+ in-diffusion. The results shown that Zn2+ ions enter the lattice in Li+ sites, but also in interstitial positions. This produces a compaction of the lattice close to the surface of the sample, generating the waveguide. It is shown that this region is surrounded by a different area in which the lattice is relaxed to recover the characteristic lattice parameters of LiNbO3:Tm3+.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).
  2. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [CrossRef]
  3. J. A. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Quantum Electron. 13(3), 626–637 (2007).
    [CrossRef]
  4. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
    [CrossRef]
  5. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
    [CrossRef]
  6. E. Lallier, J. P. Pocholle, M. Papuchon, M. de Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. P. Pelletier, “Nd:MgO:LiNbO(3) waveguide laser and amplifier,” Opt. Lett. 15(12), 682–684 (1990).
    [CrossRef] [PubMed]
  7. R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Mazé, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Quantum Electron. 3(4), 1100–1102 (1997).
    [CrossRef]
  8. E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
    [CrossRef]
  9. A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+- codoped fluorolead germanate glass,” Appl. Phys. Lett. 91(9), 091114 (2007).
    [CrossRef]
  10. S. Aozasa, H. Masuda, M. Shimizu, and M. Yamada, “Highly efficient S-Band thulium-doped fiber amplifier employing high-thulium-concentration technique,” J. Lightwave Technol. 25(8), 2108–2114 (2007).
    [CrossRef]
  11. R. Nevado and G. Lifante, “Low-loss, damage-resistant optical wave-guide in Zn-diffused LiNbO3 by a two step procedure,” Appl. Phys., A Mater. Sci. Process. 72(6), 725–728 (2001).
    [CrossRef]
  12. V. Dierolf and C. Sandmann, “Confocal two-photon emission microscopy: a new approach to waveguide imaging,” J. Lumin. 102–103, 201–205 (2003).
    [CrossRef]
  13. V. Dierolf and C. Sandmann, “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B 78(3-4), 363–366 (2004).
    [CrossRef]
  14. Y. Zhang, L. Guilbert, and P. Bourson, “Characterization of Ti:LiNbO3 waveguides by micro-Raman and luminescence spectroscopy,” Appl. Phys. B 78(3-4), 355–361 (2004).
    [CrossRef]
  15. A. Harhira, Y. Zhang, P. Bourson, L. Guilbert, M. D. Fontana, M. P. De Micheli, “Raman probing of proton exchange waveguides in lithium niobate,” 352, 153–157 (2007).
  16. D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B 88(2), 201–204 (2007).
    [CrossRef]
  17. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16(18), 13979–13989 (2008).
    [CrossRef] [PubMed]
  18. D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescnce imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
    [CrossRef]
  19. M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
    [CrossRef]
  20. D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
    [CrossRef]
  21. I. Suárez and G. Lifante, “Detailed study of the two steps for fabricating LiNbO3:Zn optical waveguides,” Appl. Phys. Express 2, 022202 (2009).
    [CrossRef]
  22. E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cussó, “Tm3+-doped Zn-diffused LiNbO3 channel waveguides,” Phys. Scr. T 118, 69–71 (2005).
    [CrossRef]
  23. V. Caciuc, A. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B 61(13), 8806–8813 (2000).
    [CrossRef]
  24. R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
    [CrossRef]
  25. R. Mouras, P. Bourson, M. D. Fontana, and G. Boulon, “Raman spectroscopy as a probe of rare-earth ions location in LiNbO3 crystals,” Opt. Commun. 197(4-6), 439–444 (2001).
    [CrossRef]
  26. C.-T. Chia, M.-L. Sun, M.-L. Hu, J.-Y. Chang, W.-S. Tse, Z.-P. Yang, and H.-H. Chen, “Room temperature A1(TO) and OH- absorption spectra of Zn-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 9B), 6234–6237 (2003).
    [CrossRef]
  27. A. Rodenas, L.M. Maestro, M.O. Ramirez, G.A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” 106, 013110 (2009).
  28. F. Abdi, M. D. Fontana, M. Aillerie, and P. Bourson, “Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO3 and its relationship to optical properties,” Appl. Phys., A Mater. Sci. Process. 83(3), 427–434 (2006).
    [CrossRef]
  29. T. S. Chernaya, T. R. Volk, I. A. Verin, and V. I. Simonov, “Threshold Concentrations in Zn-Doped Lithium Niobate Crystals and Their Structural Conditionality,” Crystallogr. Rep. 53(4), 573–578 (2008).
    [CrossRef]
  30. C.-Y. Chen, J.-C. Chen, and C.-T. Chia, “Growth and optical properties of different compositions of LiNbO3 single crystal fibers,” Opt. Mater. 30(3), 393–398 (2007).
    [CrossRef]
  31. V. A. Fedorov, Yu. N. Korkishko, G. Lifante, and F. Cussó, “Optical and structural characterization of Zinc vapour diffused waveguides in LiNbO3 crystals,” J. Eur. Ceram. Soc. 19(6-7), 1563–1567 (1999).
    [CrossRef]
  32. A. Jayaraman and A. A. Ballman, “Effect of pressure on the Raman modes in LiNbO3 and LiTaO3,” J. Appl. Phys. 60(3), 1208–1210 (1986).
    [CrossRef]
  33. F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B 68(5), 795–799 (1999).
    [CrossRef]
  34. T. S. Chernaya, B. A. Maksimov, T. R. Volk, N. M. Rubinina, and V. I. Simonov, “Zn atoms in lithium niobate and mechanism of their insertion into crystals,” JETP Lett. 73(2), 103–106 (2001).
    [CrossRef]
  35. L. Zhao, X. Wang, B. Wang, W. Wen, and T.-Y. Zhang, “ZnO-doped LiNbO3 single crystals studied by X-ray and density measurements,” Appl. Phys. B 78(6), 769–774 (2004).
    [CrossRef]
  36. D. Xue and X. He, “Dopant occupancy and structural stability of doped lithium niobate crystals,” Phys. Rev. B 73(6), 064113 (2006).
    [CrossRef]
  37. A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
    [CrossRef]
  38. R. Nevado, C. Sada, F. Segato, F. Caccavale, A. Kling, J. C. Soares, E. Cantelar, F. Cussó, and G. Lifante, “Compositional characterization of Zn-diffused lithium niobate waveguides,” Appl. Phys. B 73, 555–558 (2001).
  39. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
    [CrossRef]
  40. M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
    [CrossRef]
  41. W. Que, S. Lim, L. Zhang, and X. Yao, “The magnesium diffused layer characteristics of a lithium niobate single crystal with magnesium-ion indiffusion,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 903–907 (1998).
    [CrossRef]
  42. Y. Avrahami and E. Zolotoyabko, “Diffusion and structural modification of Ti:LiNbO3, studied by high-resolution x-ray diffraction,” J. Appl. Phys. 85(9), 6447–6452 (1999).
    [CrossRef]

2009 (5)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

I. Suárez and G. Lifante, “Detailed study of the two steps for fabricating LiNbO3:Zn optical waveguides,” Appl. Phys. Express 2, 022202 (2009).
[CrossRef]

A. Rodenas, L.M. Maestro, M.O. Ramirez, G.A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” 106, 013110 (2009).

2008 (4)

A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16(18), 13979–13989 (2008).
[CrossRef] [PubMed]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescnce imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[CrossRef]

T. S. Chernaya, T. R. Volk, I. A. Verin, and V. I. Simonov, “Threshold Concentrations in Zn-Doped Lithium Niobate Crystals and Their Structural Conditionality,” Crystallogr. Rep. 53(4), 573–578 (2008).
[CrossRef]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

2007 (7)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

J. A. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+- codoped fluorolead germanate glass,” Appl. Phys. Lett. 91(9), 091114 (2007).
[CrossRef]

S. Aozasa, H. Masuda, M. Shimizu, and M. Yamada, “Highly efficient S-Band thulium-doped fiber amplifier employing high-thulium-concentration technique,” J. Lightwave Technol. 25(8), 2108–2114 (2007).
[CrossRef]

C.-Y. Chen, J.-C. Chen, and C.-T. Chia, “Growth and optical properties of different compositions of LiNbO3 single crystal fibers,” Opt. Mater. 30(3), 393–398 (2007).
[CrossRef]

D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B 88(2), 201–204 (2007).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[CrossRef]

2006 (2)

F. Abdi, M. D. Fontana, M. Aillerie, and P. Bourson, “Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO3 and its relationship to optical properties,” Appl. Phys., A Mater. Sci. Process. 83(3), 427–434 (2006).
[CrossRef]

D. Xue and X. He, “Dopant occupancy and structural stability of doped lithium niobate crystals,” Phys. Rev. B 73(6), 064113 (2006).
[CrossRef]

2005 (2)

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cussó, “Tm3+-doped Zn-diffused LiNbO3 channel waveguides,” Phys. Scr. T 118, 69–71 (2005).
[CrossRef]

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

2004 (3)

V. Dierolf and C. Sandmann, “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B 78(3-4), 363–366 (2004).
[CrossRef]

Y. Zhang, L. Guilbert, and P. Bourson, “Characterization of Ti:LiNbO3 waveguides by micro-Raman and luminescence spectroscopy,” Appl. Phys. B 78(3-4), 355–361 (2004).
[CrossRef]

L. Zhao, X. Wang, B. Wang, W. Wen, and T.-Y. Zhang, “ZnO-doped LiNbO3 single crystals studied by X-ray and density measurements,” Appl. Phys. B 78(6), 769–774 (2004).
[CrossRef]

2003 (2)

C.-T. Chia, M.-L. Sun, M.-L. Hu, J.-Y. Chang, W.-S. Tse, Z.-P. Yang, and H.-H. Chen, “Room temperature A1(TO) and OH- absorption spectra of Zn-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 9B), 6234–6237 (2003).
[CrossRef]

V. Dierolf and C. Sandmann, “Confocal two-photon emission microscopy: a new approach to waveguide imaging,” J. Lumin. 102–103, 201–205 (2003).
[CrossRef]

2001 (5)

R. Nevado and G. Lifante, “Low-loss, damage-resistant optical wave-guide in Zn-diffused LiNbO3 by a two step procedure,” Appl. Phys., A Mater. Sci. Process. 72(6), 725–728 (2001).
[CrossRef]

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).

T. S. Chernaya, B. A. Maksimov, T. R. Volk, N. M. Rubinina, and V. I. Simonov, “Zn atoms in lithium niobate and mechanism of their insertion into crystals,” JETP Lett. 73(2), 103–106 (2001).
[CrossRef]

R. Mouras, P. Bourson, M. D. Fontana, and G. Boulon, “Raman spectroscopy as a probe of rare-earth ions location in LiNbO3 crystals,” Opt. Commun. 197(4-6), 439–444 (2001).
[CrossRef]

R. Nevado, C. Sada, F. Segato, F. Caccavale, A. Kling, J. C. Soares, E. Cantelar, F. Cussó, and G. Lifante, “Compositional characterization of Zn-diffused lithium niobate waveguides,” Appl. Phys. B 73, 555–558 (2001).

2000 (2)

V. Caciuc, A. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B 61(13), 8806–8813 (2000).
[CrossRef]

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[CrossRef]

1999 (3)

V. A. Fedorov, Yu. N. Korkishko, G. Lifante, and F. Cussó, “Optical and structural characterization of Zinc vapour diffused waveguides in LiNbO3 crystals,” J. Eur. Ceram. Soc. 19(6-7), 1563–1567 (1999).
[CrossRef]

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B 68(5), 795–799 (1999).
[CrossRef]

Y. Avrahami and E. Zolotoyabko, “Diffusion and structural modification of Ti:LiNbO3, studied by high-resolution x-ray diffraction,” J. Appl. Phys. 85(9), 6447–6452 (1999).
[CrossRef]

1998 (1)

W. Que, S. Lim, L. Zhang, and X. Yao, “The magnesium diffused layer characteristics of a lithium niobate single crystal with magnesium-ion indiffusion,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 903–907 (1998).
[CrossRef]

1997 (1)

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Mazé, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Quantum Electron. 3(4), 1100–1102 (1997).
[CrossRef]

1995 (1)

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
[CrossRef]

1990 (1)

1986 (1)

A. Jayaraman and A. A. Ballman, “Effect of pressure on the Raman modes in LiNbO3 and LiTaO3,” J. Appl. Phys. 60(3), 1208–1210 (1986).
[CrossRef]

1966 (1)

M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
[CrossRef]

Abdi, F.

F. Abdi, M. D. Fontana, M. Aillerie, and P. Bourson, “Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO3 and its relationship to optical properties,” Appl. Phys., A Mater. Sci. Process. 83(3), 427–434 (2006).
[CrossRef]

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B 68(5), 795–799 (1999).
[CrossRef]

Aillerie, M.

F. Abdi, M. D. Fontana, M. Aillerie, and P. Bourson, “Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO3 and its relationship to optical properties,” Appl. Phys., A Mater. Sci. Process. 83(3), 427–434 (2006).
[CrossRef]

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B 68(5), 795–799 (1999).
[CrossRef]

Aozasa, S.

Avrahami, Y.

Y. Avrahami and E. Zolotoyabko, “Diffusion and structural modification of Ti:LiNbO3, studied by high-resolution x-ray diffraction,” J. Appl. Phys. 85(9), 6447–6452 (1999).
[CrossRef]

Ballman, A. A.

A. Jayaraman and A. A. Ballman, “Effect of pressure on the Raman modes in LiNbO3 and LiTaO3,” J. Appl. Phys. 60(3), 1208–1210 (1986).
[CrossRef]

Borstel, G.

V. Caciuc, A. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B 61(13), 8806–8813 (2000).
[CrossRef]

Boulon, G.

R. Mouras, P. Bourson, M. D. Fontana, and G. Boulon, “Raman spectroscopy as a probe of rare-earth ions location in LiNbO3 crystals,” Opt. Commun. 197(4-6), 439–444 (2001).
[CrossRef]

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
[CrossRef]

Bourson, P.

F. Abdi, M. D. Fontana, M. Aillerie, and P. Bourson, “Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO3 and its relationship to optical properties,” Appl. Phys., A Mater. Sci. Process. 83(3), 427–434 (2006).
[CrossRef]

Y. Zhang, L. Guilbert, and P. Bourson, “Characterization of Ti:LiNbO3 waveguides by micro-Raman and luminescence spectroscopy,” Appl. Phys. B 78(3-4), 355–361 (2004).
[CrossRef]

R. Mouras, P. Bourson, M. D. Fontana, and G. Boulon, “Raman spectroscopy as a probe of rare-earth ions location in LiNbO3 crystals,” Opt. Commun. 197(4-6), 439–444 (2001).
[CrossRef]

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[CrossRef]

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B 68(5), 795–799 (1999).
[CrossRef]

Büchter, D.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Bueno, L. A.

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+- codoped fluorolead germanate glass,” Appl. Phys. Lett. 91(9), 091114 (2007).
[CrossRef]

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[CrossRef]

Caccavale, F.

R. Nevado, C. Sada, F. Segato, F. Caccavale, A. Kling, J. C. Soares, E. Cantelar, F. Cussó, and G. Lifante, “Compositional characterization of Zn-diffused lithium niobate waveguides,” Appl. Phys. B 73, 555–558 (2001).

Caciuc, V.

V. Caciuc, A. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B 61(13), 8806–8813 (2000).
[CrossRef]

Cantelar, E.

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B 88(2), 201–204 (2007).
[CrossRef]

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cussó, “Tm3+-doped Zn-diffused LiNbO3 channel waveguides,” Phys. Scr. T 118, 69–71 (2005).
[CrossRef]

R. Nevado, C. Sada, F. Segato, F. Caccavale, A. Kling, J. C. Soares, E. Cantelar, F. Cussó, and G. Lifante, “Compositional characterization of Zn-diffused lithium niobate waveguides,” Appl. Phys. B 73, 555–558 (2001).

Chang, J.-Y.

C.-T. Chia, M.-L. Sun, M.-L. Hu, J.-Y. Chang, W.-S. Tse, Z.-P. Yang, and H.-H. Chen, “Room temperature A1(TO) and OH- absorption spectra of Zn-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 9B), 6234–6237 (2003).
[CrossRef]

Chen, C.-Y.

C.-Y. Chen, J.-C. Chen, and C.-T. Chia, “Growth and optical properties of different compositions of LiNbO3 single crystal fibers,” Opt. Mater. 30(3), 393–398 (2007).
[CrossRef]

Chen, F.

A. Rodenas, L.M. Maestro, M.O. Ramirez, G.A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” 106, 013110 (2009).

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescnce imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[CrossRef]

Chen, H.-H.

C.-T. Chia, M.-L. Sun, M.-L. Hu, J.-Y. Chang, W.-S. Tse, Z.-P. Yang, and H.-H. Chen, “Room temperature A1(TO) and OH- absorption spectra of Zn-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 9B), 6234–6237 (2003).
[CrossRef]

Chen, J.-C.

C.-Y. Chen, J.-C. Chen, and C.-T. Chia, “Growth and optical properties of different compositions of LiNbO3 single crystal fibers,” Opt. Mater. 30(3), 393–398 (2007).
[CrossRef]

Chernaya, T. S.

T. S. Chernaya, T. R. Volk, I. A. Verin, and V. I. Simonov, “Threshold Concentrations in Zn-Doped Lithium Niobate Crystals and Their Structural Conditionality,” Crystallogr. Rep. 53(4), 573–578 (2008).
[CrossRef]

T. S. Chernaya, B. A. Maksimov, T. R. Volk, N. M. Rubinina, and V. I. Simonov, “Zn atoms in lithium niobate and mechanism of their insertion into crystals,” JETP Lett. 73(2), 103–106 (2001).
[CrossRef]

Chia, C.-T.

C.-Y. Chen, J.-C. Chen, and C.-T. Chia, “Growth and optical properties of different compositions of LiNbO3 single crystal fibers,” Opt. Mater. 30(3), 393–398 (2007).
[CrossRef]

C.-T. Chia, M.-L. Sun, M.-L. Hu, J.-Y. Chang, W.-S. Tse, Z.-P. Yang, and H.-H. Chen, “Room temperature A1(TO) and OH- absorption spectra of Zn-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 9B), 6234–6237 (2003).
[CrossRef]

Clarkson, W. A.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Mazé, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Quantum Electron. 3(4), 1100–1102 (1997).
[CrossRef]

Cussó, F.

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cussó, “Tm3+-doped Zn-diffused LiNbO3 channel waveguides,” Phys. Scr. T 118, 69–71 (2005).
[CrossRef]

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

R. Nevado, C. Sada, F. Segato, F. Caccavale, A. Kling, J. C. Soares, E. Cantelar, F. Cussó, and G. Lifante, “Compositional characterization of Zn-diffused lithium niobate waveguides,” Appl. Phys. B 73, 555–558 (2001).

V. A. Fedorov, Yu. N. Korkishko, G. Lifante, and F. Cussó, “Optical and structural characterization of Zinc vapour diffused waveguides in LiNbO3 crystals,” J. Eur. Ceram. Soc. 19(6-7), 1563–1567 (1999).
[CrossRef]

da Costa, E. B.

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+- codoped fluorolead germanate glass,” Appl. Phys. Lett. 91(9), 091114 (2007).
[CrossRef]

da Silva, E. A.

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+- codoped fluorolead germanate glass,” Appl. Phys. Lett. 91(9), 091114 (2007).
[CrossRef]

Das, B. K.

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).

de Micheli, M.

Degl’innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Dierolf, V.

V. Dierolf and C. Sandmann, “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B 78(3-4), 363–366 (2004).
[CrossRef]

V. Dierolf and C. Sandmann, “Confocal two-photon emission microscopy: a new approach to waveguide imaging,” J. Lumin. 102–103, 201–205 (2003).
[CrossRef]

do Nascimento, R. F.

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+- codoped fluorolead germanate glass,” Appl. Phys. Lett. 91(9), 091114 (2007).
[CrossRef]

do Nascimento, V. B.

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+- codoped fluorolead germanate glass,” Appl. Phys. Lett. 91(9), 091114 (2007).
[CrossRef]

Fedorov, V. A.

V. A. Fedorov, Yu. N. Korkishko, G. Lifante, and F. Cussó, “Optical and structural characterization of Zinc vapour diffused waveguides in LiNbO3 crystals,” J. Eur. Ceram. Soc. 19(6-7), 1563–1567 (1999).
[CrossRef]

Fontana, M.

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B 68(5), 795–799 (1999).
[CrossRef]

Fontana, M. D.

F. Abdi, M. D. Fontana, M. Aillerie, and P. Bourson, “Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO3 and its relationship to optical properties,” Appl. Phys., A Mater. Sci. Process. 83(3), 427–434 (2006).
[CrossRef]

R. Mouras, P. Bourson, M. D. Fontana, and G. Boulon, “Raman spectroscopy as a probe of rare-earth ions location in LiNbO3 crystals,” Opt. Commun. 197(4-6), 439–444 (2001).
[CrossRef]

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[CrossRef]

García-Solé, J.

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
[CrossRef]

Gouveia-Neto, A. S.

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+- codoped fluorolead germanate glass,” Appl. Phys. Lett. 91(9), 091114 (2007).
[CrossRef]

Grezes-Besset, C.

Grundkötter, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Guilbert, L.

Y. Zhang, L. Guilbert, and P. Bourson, “Characterization of Ti:LiNbO3 waveguides by micro-Raman and luminescence spectroscopy,” Appl. Phys. B 78(3-4), 355–361 (2004).
[CrossRef]

Günter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Hanna, D. C.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Mazé, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Quantum Electron. 3(4), 1100–1102 (1997).
[CrossRef]

He, Q.

He, X.

D. Xue and X. He, “Dopant occupancy and structural stability of doped lithium niobate crystals,” Phys. Rev. B 73(6), 064113 (2006).
[CrossRef]

Herman, P.

Herrmann, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Hobden, M. V.

M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
[CrossRef]

Hu, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Hu, M.-L.

C.-T. Chia, M.-L. Sun, M.-L. Hu, J.-Y. Chang, W.-S. Tse, Z.-P. Yang, and H.-H. Chen, “Room temperature A1(TO) and OH- absorption spectra of Zn-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 9B), 6234–6237 (2003).
[CrossRef]

Jaffrezic, H.

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
[CrossRef]

Jaque, D.

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

A. Rodenas, L.M. Maestro, M.O. Ramirez, G.A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” 106, 013110 (2009).

A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16(18), 13979–13989 (2008).
[CrossRef] [PubMed]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescnce imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[CrossRef]

D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B 88(2), 201–204 (2007).
[CrossRef]

Jayaraman, A.

A. Jayaraman and A. A. Ballman, “Effect of pressure on the Raman modes in LiNbO3 and LiTaO3,” J. Appl. Phys. 60(3), 1208–1210 (1986).
[CrossRef]

Kling, A.

R. Nevado, C. Sada, F. Segato, F. Caccavale, A. Kling, J. C. Soares, E. Cantelar, F. Cussó, and G. Lifante, “Compositional characterization of Zn-diffused lithium niobate waveguides,” Appl. Phys. B 73, 555–558 (2001).

Korkishko, Yu. N.

V. A. Fedorov, Yu. N. Korkishko, G. Lifante, and F. Cussó, “Optical and structural characterization of Zinc vapour diffused waveguides in LiNbO3 crystals,” J. Eur. Ceram. Soc. 19(6-7), 1563–1567 (1999).
[CrossRef]

Lallier, E.

Li, M. J.

Lifante, G.

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

I. Suárez and G. Lifante, “Detailed study of the two steps for fabricating LiNbO3:Zn optical waveguides,” Appl. Phys. Express 2, 022202 (2009).
[CrossRef]

D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B 88(2), 201–204 (2007).
[CrossRef]

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cussó, “Tm3+-doped Zn-diffused LiNbO3 channel waveguides,” Phys. Scr. T 118, 69–71 (2005).
[CrossRef]

R. Nevado and G. Lifante, “Low-loss, damage-resistant optical wave-guide in Zn-diffused LiNbO3 by a two step procedure,” Appl. Phys., A Mater. Sci. Process. 72(6), 725–728 (2001).
[CrossRef]

R. Nevado, C. Sada, F. Segato, F. Caccavale, A. Kling, J. C. Soares, E. Cantelar, F. Cussó, and G. Lifante, “Compositional characterization of Zn-diffused lithium niobate waveguides,” Appl. Phys. B 73, 555–558 (2001).

V. A. Fedorov, Yu. N. Korkishko, G. Lifante, and F. Cussó, “Optical and structural characterization of Zinc vapour diffused waveguides in LiNbO3 crystals,” J. Eur. Ceram. Soc. 19(6-7), 1563–1567 (1999).
[CrossRef]

Lim, S.

W. Que, S. Lim, L. Zhang, and X. Yao, “The magnesium diffused layer characteristics of a lithium niobate single crystal with magnesium-ion indiffusion,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 903–907 (1998).
[CrossRef]

Lorenzo, A.

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
[CrossRef]

Mackenzie, J. A.

J. A. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

Maestro, L.M.

A. Rodenas, L.M. Maestro, M.O. Ramirez, G.A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” 106, 013110 (2009).

Maksimov, B. A.

T. S. Chernaya, B. A. Maksimov, T. R. Volk, N. M. Rubinina, and V. I. Simonov, “Zn atoms in lithium niobate and mechanism of their insertion into crystals,” JETP Lett. 73(2), 103–106 (2001).
[CrossRef]

Martín Rodríguez, E.

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

Masuda, H.

Maximov, B.

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B 68(5), 795–799 (1999).
[CrossRef]

Mazé, G.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Mazé, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Quantum Electron. 3(4), 1100–1102 (1997).
[CrossRef]

Min, Y.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Moore, N.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Mazé, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Quantum Electron. 3(4), 1100–1102 (1997).
[CrossRef]

Mouras, R.

R. Mouras, P. Bourson, M. D. Fontana, and G. Boulon, “Raman spectroscopy as a probe of rare-earth ions location in LiNbO3 crystals,” Opt. Commun. 197(4-6), 439–444 (2001).
[CrossRef]

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[CrossRef]

Nejadmalayeri, A. H.

Nevado, R.

R. Nevado and G. Lifante, “Low-loss, damage-resistant optical wave-guide in Zn-diffused LiNbO3 by a two step procedure,” Appl. Phys., A Mater. Sci. Process. 72(6), 725–728 (2001).
[CrossRef]

R. Nevado, C. Sada, F. Segato, F. Caccavale, A. Kling, J. C. Soares, E. Cantelar, F. Cussó, and G. Lifante, “Compositional characterization of Zn-diffused lithium niobate waveguides,” Appl. Phys. B 73, 555–558 (2001).

Nolte, S.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[CrossRef]

Nouroozi, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Orlov, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Ostrowsky, D. B.

Papuchon, M.

Paschotta, R.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Mazé, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Quantum Electron. 3(4), 1100–1102 (1997).
[CrossRef]

Pelletier, E. P.

Pernas, P. L.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cussó, “Tm3+-doped Zn-diffused LiNbO3 channel waveguides,” Phys. Scr. T 118, 69–71 (2005).
[CrossRef]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Pocholle, J. P.

Postnikov, A.

V. Caciuc, A. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B 61(13), 8806–8813 (2000).
[CrossRef]

Postnikov, A. V.

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[CrossRef]

Que, W.

W. Que, S. Lim, L. Zhang, and X. Yao, “The magnesium diffused layer characteristics of a lithium niobate single crystal with magnesium-ion indiffusion,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 903–907 (1998).
[CrossRef]

Quintanilla, M.

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

Quiring, V.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Ramirez, M.O.

A. Rodenas, L.M. Maestro, M.O. Ramirez, G.A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” 106, 013110 (2009).

Reza, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Ricken, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Rodenas, A.

A. Rodenas, L.M. Maestro, M.O. Ramirez, G.A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” 106, 013110 (2009).

Ródenas, A.

Roso, L.

A. Rodenas, L.M. Maestro, M.O. Ramirez, G.A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” 106, 013110 (2009).

Roux, B.

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
[CrossRef]

Rubinina, N.

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B 68(5), 795–799 (1999).
[CrossRef]

Rubinina, N. M.

T. S. Chernaya, B. A. Maksimov, T. R. Volk, N. M. Rubinina, and V. I. Simonov, “Zn atoms in lithium niobate and mechanism of their insertion into crystals,” JETP Lett. 73(2), 103–106 (2001).
[CrossRef]

Sada, C.

R. Nevado, C. Sada, F. Segato, F. Caccavale, A. Kling, J. C. Soares, E. Cantelar, F. Cussó, and G. Lifante, “Compositional characterization of Zn-diffused lithium niobate waveguides,” Appl. Phys. B 73, 555–558 (2001).

Sandmann, C.

V. Dierolf and C. Sandmann, “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B 78(3-4), 363–366 (2004).
[CrossRef]

V. Dierolf and C. Sandmann, “Confocal two-photon emission microscopy: a new approach to waveguide imaging,” J. Lumin. 102–103, 201–205 (2003).
[CrossRef]

Sanz-García, J. A.

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cussó, “Tm3+-doped Zn-diffused LiNbO3 channel waveguides,” Phys. Scr. T 118, 69–71 (2005).
[CrossRef]

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

Segato, F.

R. Nevado, C. Sada, F. Segato, F. Caccavale, A. Kling, J. C. Soares, E. Cantelar, F. Cussó, and G. Lifante, “Compositional characterization of Zn-diffused lithium niobate waveguides,” Appl. Phys. B 73, 555–558 (2001).

Shimizu, M.

Simonov, V. I.

T. S. Chernaya, T. R. Volk, I. A. Verin, and V. I. Simonov, “Threshold Concentrations in Zn-Doped Lithium Niobate Crystals and Their Structural Conditionality,” Crystallogr. Rep. 53(4), 573–578 (2008).
[CrossRef]

T. S. Chernaya, B. A. Maksimov, T. R. Volk, N. M. Rubinina, and V. I. Simonov, “Zn atoms in lithium niobate and mechanism of their insertion into crystals,” JETP Lett. 73(2), 103–106 (2001).
[CrossRef]

Soares, J. C.

R. Nevado, C. Sada, F. Segato, F. Caccavale, A. Kling, J. C. Soares, E. Cantelar, F. Cussó, and G. Lifante, “Compositional characterization of Zn-diffused lithium niobate waveguides,” Appl. Phys. B 73, 555–558 (2001).

Sohler, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).

Suárez, I.

I. Suárez and G. Lifante, “Detailed study of the two steps for fabricating LiNbO3:Zn optical waveguides,” Appl. Phys. Express 2, 022202 (2009).
[CrossRef]

Suche, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).

Sulyanov, S.

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B 68(5), 795–799 (1999).
[CrossRef]

Sun, M.-L.

C.-T. Chia, M.-L. Sun, M.-L. Hu, J.-Y. Chang, W.-S. Tse, Z.-P. Yang, and H.-H. Chen, “Room temperature A1(TO) and OH- absorption spectra of Zn-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 9B), 6234–6237 (2003).
[CrossRef]

Tan, Y.

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescnce imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[CrossRef]

Torchia, G. A.

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cussó, “Tm3+-doped Zn-diffused LiNbO3 channel waveguides,” Phys. Scr. T 118, 69–71 (2005).
[CrossRef]

Torchia, G.A.

A. Rodenas, L.M. Maestro, M.O. Ramirez, G.A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” 106, 013110 (2009).

Tropper, A. C.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Mazé, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Quantum Electron. 3(4), 1100–1102 (1997).
[CrossRef]

Tse, W.-S.

C.-T. Chia, M.-L. Sun, M.-L. Hu, J.-Y. Chang, W.-S. Tse, Z.-P. Yang, and H.-H. Chen, “Room temperature A1(TO) and OH- absorption spectra of Zn-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 9B), 6234–6237 (2003).
[CrossRef]

Tünnermann, A.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[CrossRef]

Vannahme, C.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Verin, I. A.

T. S. Chernaya, T. R. Volk, I. A. Verin, and V. I. Simonov, “Threshold Concentrations in Zn-Doped Lithium Niobate Crystals and Their Structural Conditionality,” Crystallogr. Rep. 53(4), 573–578 (2008).
[CrossRef]

Volk, T.

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B 68(5), 795–799 (1999).
[CrossRef]

Volk, T. R.

T. S. Chernaya, T. R. Volk, I. A. Verin, and V. I. Simonov, “Threshold Concentrations in Zn-Doped Lithium Niobate Crystals and Their Structural Conditionality,” Crystallogr. Rep. 53(4), 573–578 (2008).
[CrossRef]

T. S. Chernaya, B. A. Maksimov, T. R. Volk, N. M. Rubinina, and V. I. Simonov, “Zn atoms in lithium niobate and mechanism of their insertion into crystals,” JETP Lett. 73(2), 103–106 (2001).
[CrossRef]

Wang, B.

L. Zhao, X. Wang, B. Wang, W. Wen, and T.-Y. Zhang, “ZnO-doped LiNbO3 single crystals studied by X-ray and density measurements,” Appl. Phys. B 78(6), 769–774 (2004).
[CrossRef]

Wang, X.

L. Zhao, X. Wang, B. Wang, W. Wen, and T.-Y. Zhang, “ZnO-doped LiNbO3 single crystals studied by X-ray and density measurements,” Appl. Phys. B 78(6), 769–774 (2004).
[CrossRef]

Warner, J.

M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
[CrossRef]

Wen, W.

L. Zhao, X. Wang, B. Wang, W. Wen, and T.-Y. Zhang, “ZnO-doped LiNbO3 single crystals studied by X-ray and density measurements,” Appl. Phys. B 78(6), 769–774 (2004).
[CrossRef]

Wöhlecke, M.

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B 68(5), 795–799 (1999).
[CrossRef]

Xue, D.

D. Xue and X. He, “Dopant occupancy and structural stability of doped lithium niobate crystals,” Phys. Rev. B 73(6), 064113 (2006).
[CrossRef]

Yamada, M.

Yang, Z.-P.

C.-T. Chia, M.-L. Sun, M.-L. Hu, J.-Y. Chang, W.-S. Tse, Z.-P. Yang, and H.-H. Chen, “Room temperature A1(TO) and OH- absorption spectra of Zn-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 9B), 6234–6237 (2003).
[CrossRef]

Yao, X.

W. Que, S. Lim, L. Zhang, and X. Yao, “The magnesium diffused layer characteristics of a lithium niobate single crystal with magnesium-ion indiffusion,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 903–907 (1998).
[CrossRef]

Zhang, L.

W. Que, S. Lim, L. Zhang, and X. Yao, “The magnesium diffused layer characteristics of a lithium niobate single crystal with magnesium-ion indiffusion,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 903–907 (1998).
[CrossRef]

Zhang, T.-Y.

L. Zhao, X. Wang, B. Wang, W. Wen, and T.-Y. Zhang, “ZnO-doped LiNbO3 single crystals studied by X-ray and density measurements,” Appl. Phys. B 78(6), 769–774 (2004).
[CrossRef]

Zhang, Y.

Y. Zhang, L. Guilbert, and P. Bourson, “Characterization of Ti:LiNbO3 waveguides by micro-Raman and luminescence spectroscopy,” Appl. Phys. B 78(3-4), 355–361 (2004).
[CrossRef]

Zhao, L.

L. Zhao, X. Wang, B. Wang, W. Wen, and T.-Y. Zhang, “ZnO-doped LiNbO3 single crystals studied by X-ray and density measurements,” Appl. Phys. B 78(6), 769–774 (2004).
[CrossRef]

Zolotoyabko, E.

Y. Avrahami and E. Zolotoyabko, “Diffusion and structural modification of Ti:LiNbO3, studied by high-resolution x-ray diffraction,” J. Appl. Phys. 85(9), 6447–6452 (1999).
[CrossRef]

Appl. Phys. B (7)

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).

V. Dierolf and C. Sandmann, “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B 78(3-4), 363–366 (2004).
[CrossRef]

Y. Zhang, L. Guilbert, and P. Bourson, “Characterization of Ti:LiNbO3 waveguides by micro-Raman and luminescence spectroscopy,” Appl. Phys. B 78(3-4), 355–361 (2004).
[CrossRef]

D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B 88(2), 201–204 (2007).
[CrossRef]

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B 68(5), 795–799 (1999).
[CrossRef]

L. Zhao, X. Wang, B. Wang, W. Wen, and T.-Y. Zhang, “ZnO-doped LiNbO3 single crystals studied by X-ray and density measurements,” Appl. Phys. B 78(6), 769–774 (2004).
[CrossRef]

R. Nevado, C. Sada, F. Segato, F. Caccavale, A. Kling, J. C. Soares, E. Cantelar, F. Cussó, and G. Lifante, “Compositional characterization of Zn-diffused lithium niobate waveguides,” Appl. Phys. B 73, 555–558 (2001).

Appl. Phys. Express (1)

I. Suárez and G. Lifante, “Detailed study of the two steps for fabricating LiNbO3:Zn optical waveguides,” Appl. Phys. Express 2, 022202 (2009).
[CrossRef]

Appl. Phys. Lett. (5)

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescnce imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008).
[CrossRef]

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[CrossRef]

A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+- codoped fluorolead germanate glass,” Appl. Phys. Lett. 91(9), 091114 (2007).
[CrossRef]

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (3)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[CrossRef]

R. Nevado and G. Lifante, “Low-loss, damage-resistant optical wave-guide in Zn-diffused LiNbO3 by a two step procedure,” Appl. Phys., A Mater. Sci. Process. 72(6), 725–728 (2001).
[CrossRef]

F. Abdi, M. D. Fontana, M. Aillerie, and P. Bourson, “Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO3 and its relationship to optical properties,” Appl. Phys., A Mater. Sci. Process. 83(3), 427–434 (2006).
[CrossRef]

Crystallogr. Rep. (1)

T. S. Chernaya, T. R. Volk, I. A. Verin, and V. I. Simonov, “Threshold Concentrations in Zn-Doped Lithium Niobate Crystals and Their Structural Conditionality,” Crystallogr. Rep. 53(4), 573–578 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Mazé, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Quantum Electron. 3(4), 1100–1102 (1997).
[CrossRef]

J. A. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

J. Appl. Phys. (3)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

A. Jayaraman and A. A. Ballman, “Effect of pressure on the Raman modes in LiNbO3 and LiTaO3,” J. Appl. Phys. 60(3), 1208–1210 (1986).
[CrossRef]

Y. Avrahami and E. Zolotoyabko, “Diffusion and structural modification of Ti:LiNbO3, studied by high-resolution x-ray diffraction,” J. Appl. Phys. 85(9), 6447–6452 (1999).
[CrossRef]

J. Eur. Ceram. Soc. (1)

V. A. Fedorov, Yu. N. Korkishko, G. Lifante, and F. Cussó, “Optical and structural characterization of Zinc vapour diffused waveguides in LiNbO3 crystals,” J. Eur. Ceram. Soc. 19(6-7), 1563–1567 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Lumin. (2)

V. Dierolf and C. Sandmann, “Confocal two-photon emission microscopy: a new approach to waveguide imaging,” J. Lumin. 102–103, 201–205 (2003).
[CrossRef]

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

J. Phys. Condens. Matter (1)

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[CrossRef]

JETP Lett. (1)

T. S. Chernaya, B. A. Maksimov, T. R. Volk, N. M. Rubinina, and V. I. Simonov, “Zn atoms in lithium niobate and mechanism of their insertion into crystals,” JETP Lett. 73(2), 103–106 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (2)

C.-T. Chia, M.-L. Sun, M.-L. Hu, J.-Y. Chang, W.-S. Tse, Z.-P. Yang, and H.-H. Chen, “Room temperature A1(TO) and OH- absorption spectra of Zn-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 9B), 6234–6237 (2003).
[CrossRef]

W. Que, S. Lim, L. Zhang, and X. Yao, “The magnesium diffused layer characteristics of a lithium niobate single crystal with magnesium-ion indiffusion,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 903–907 (1998).
[CrossRef]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Opt. Commun. (1)

R. Mouras, P. Bourson, M. D. Fontana, and G. Boulon, “Raman spectroscopy as a probe of rare-earth ions location in LiNbO3 crystals,” Opt. Commun. 197(4-6), 439–444 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

C.-Y. Chen, J.-C. Chen, and C.-T. Chia, “Growth and optical properties of different compositions of LiNbO3 single crystal fibers,” Opt. Mater. 30(3), 393–398 (2007).
[CrossRef]

Opt. Photon. News (1)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Phys. Lett. (1)

M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966).
[CrossRef]

Phys. Rev. B (2)

D. Xue and X. He, “Dopant occupancy and structural stability of doped lithium niobate crystals,” Phys. Rev. B 73(6), 064113 (2006).
[CrossRef]

V. Caciuc, A. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B 61(13), 8806–8813 (2000).
[CrossRef]

Phys. Scr. T (1)

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cussó, “Tm3+-doped Zn-diffused LiNbO3 channel waveguides,” Phys. Scr. T 118, 69–71 (2005).
[CrossRef]

Other (2)

A. Rodenas, L.M. Maestro, M.O. Ramirez, G.A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” 106, 013110 (2009).

A. Harhira, Y. Zhang, P. Bourson, L. Guilbert, M. D. Fontana, M. P. De Micheli, “Raman probing of proton exchange waveguides in lithium niobate,” 352, 153–157 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Excitation scheme and position of the sample in the confocal microscope. On the right hand side of the figure a detail of the sample shows the reference system defined in this work.

Fig. 2
Fig. 2

Raman spectra of LiNbO3:Tm3+ without any polarization (a), and under Y ( Z Z ) Y ¯ configuration (b). The modes have been labeled according to [23]. The dashed lines in (b) are depicted to clarify A1(TO1) and A1(TO2) modes position..

Fig. 3
Fig. 3

Wavenumber shift (up) and bandwidth (down) of all the measured Raman modes in the non-polarized configuration (a) and under Y(ZZ)Y configuration (b). All the results are displayed relative to the bulk values. The lines have been drawn to guide the eye.

Fig. 4
Fig. 4

2D maps of three of the measured maps: A1(TO4), E(TO6) and E(TO1). The results of the half-width of each mode are displayed on the left, while the Raman shift is on the right. For the sake of clarity, in the maps of A1(TO4) the reference axes are represented.

Fig. 5
Fig. 5

Spatial dependence of the relative Raman shift (Δp) of E(TO6) phonon along the -ξΟξ line, represented in the inset.

Tables (1)

Tables Icon

Table 1 Summary of the results obtained for all the analyzed Raman modes and a short description of the main characteristics of each one, following the theoretical results of Caciuc et al. [23].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ V V = 6 n ( n 2 1 ) ( n 2 + 2 ) Δ n 0.5 Δ n

Metrics