Abstract

An all-fiber optical magnetic field sensor is demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt.%-terbium–doped silicate fiber with a Verdet constant of –24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Lenz, “A review of magnetic sensors,” Proc. IEEE 78(6), 973–989 (1990).
    [CrossRef]
  2. A. Yariv and H. V. Winsor, “Proposal for detection of magnetic fields through magnetostrictive perturbation of optical fibers,” Opt. Lett. 5(3), 87–89 (1980).
    [CrossRef] [PubMed]
  3. H. Okamura, “Fiber-optic magnetic sensor utilizing the Lorentzian force,” J. Lightwave Technol. 8(10), 1558–1564 (1990).
    [CrossRef]
  4. V. Radojevic, D. Nedeljkovic, N. Talijan, D. Trifunovic, and R. Aleksic, “Optical fibers with composite magnetic coating for magnetic field sensing,” J. Magn. Magn. Mater. 272−276, E1755−E1756 (2004).
    [CrossRef]
  5. C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
    [CrossRef]
  6. G. W. Day, D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen, “Faraday rotation in coiled, monomode optical fibers: isolators, filters, and magnetic sensors,” Opt. Lett. 7(5), 238–240 (1982).
    [CrossRef] [PubMed]
  7. V. Annovazzi-Lodi, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence,” J. Lightwave Technol. 13(12), 2349–2353 (1995).
    [CrossRef]
  8. W. E. Gettys, F. J. Keller, and M. J. Skove, Physics, Classical and Modern (McGraw-Hill, New York, 1989).
  9. L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “Effective Verdet constant in a terbium-doped-core phosphate fiber,” Opt. Lett. 34(11), 1699–1701 (2009).
    [CrossRef] [PubMed]
  10. L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber,” Opt. Lett. (to be published in Opt. Lett. Vol. 35(5), (2010)).
  11. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34(30), 6848–6854 (1995).
    [CrossRef] [PubMed]
  12. D. A. Nolan, G. E. Berkey, M.-J. Li, X. Chen, W. A. Wood, and L. A. Zenteno, “Single-polarization fiber with a high extinction ratio,” Opt. Lett. 29(16), 1855–1857 (2004).
    [CrossRef] [PubMed]
  13. M. McCaig, and A. G. Clegg, Permanent Magnets in Theory and Practice, 2nd ed. (Wiley, New York, 1987).
  14. J. R. Marciante, N. O. Farmiga, J. P. Kondis, and J. R. Frederick, “Phase effects of secondary reflections on the performance of reflective liquid-crystal cells,” Opt. Express 11(9), 1096–1105 (2003).
    [CrossRef] [PubMed]
  15. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, and M. N. Deeter, “Temperature dependence of the Verdet constant in several,” Appl. Opt. 30(10), 1176–1178 (1991).
    [CrossRef] [PubMed]

2009

2006

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
[CrossRef]

2004

2003

1995

J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34(30), 6848–6854 (1995).
[CrossRef] [PubMed]

V. Annovazzi-Lodi, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence,” J. Lightwave Technol. 13(12), 2349–2353 (1995).
[CrossRef]

1991

1990

H. Okamura, “Fiber-optic magnetic sensor utilizing the Lorentzian force,” J. Lightwave Technol. 8(10), 1558–1564 (1990).
[CrossRef]

J. E. Lenz, “A review of magnetic sensors,” Proc. IEEE 78(6), 973–989 (1990).
[CrossRef]

1982

1980

Annovazzi-Lodi, V.

V. Annovazzi-Lodi, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence,” J. Lightwave Technol. 13(12), 2349–2353 (1995).
[CrossRef]

Ballato, J.

Barlow, A. J.

Berkey, G. E.

Chen, H.-W.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
[CrossRef]

Chen, X.

Day, G. W.

Deeter, M. N.

Farmiga, N. O.

Frederick, J. R.

Hwang, C.-C.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
[CrossRef]

Jiang, S.

L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “Effective Verdet constant in a terbium-doped-core phosphate fiber,” Opt. Lett. 34(11), 1699–1701 (2009).
[CrossRef] [PubMed]

L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber,” Opt. Lett. (to be published in Opt. Lett. Vol. 35(5), (2010)).

Kondis, J. P.

Lenz, J. E.

J. E. Lenz, “A review of magnetic sensors,” Proc. IEEE 78(6), 973–989 (1990).
[CrossRef]

Leona, A.

V. Annovazzi-Lodi, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence,” J. Lightwave Technol. 13(12), 2349–2353 (1995).
[CrossRef]

Li, M.-J.

Lin, S.-W.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
[CrossRef]

Liu, W. F.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
[CrossRef]

Marciante, J. R.

Merlo, S.

V. Annovazzi-Lodi, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence,” J. Lightwave Technol. 13(12), 2349–2353 (1995).
[CrossRef]

Milner, T. E.

Nolan, D. A.

Okamura, H.

H. Okamura, “Fiber-optic magnetic sensor utilizing the Lorentzian force,” J. Lightwave Technol. 8(10), 1558–1564 (1990).
[CrossRef]

Payne, D. N.

Ramskov-Hansen, J. J.

Rose, A. H.

Snitzer, E.

Sun, L.

L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “Effective Verdet constant in a terbium-doped-core phosphate fiber,” Opt. Lett. 34(11), 1699–1701 (2009).
[CrossRef] [PubMed]

L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber,” Opt. Lett. (to be published in Opt. Lett. Vol. 35(5), (2010)).

Tien, C.-L.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
[CrossRef]

Williams, P. A.

Winsor, H. V.

Wood, W. A.

Yariv, A.

Zenteno, L. A.

Zuegel, J. D.

L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “Effective Verdet constant in a terbium-doped-core phosphate fiber,” Opt. Lett. 34(11), 1699–1701 (2009).
[CrossRef] [PubMed]

L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber,” Opt. Lett. (to be published in Opt. Lett. Vol. 35(5), (2010)).

Appl. Opt.

IEEE Trans. Magn.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006).
[CrossRef]

J. Lightwave Technol.

H. Okamura, “Fiber-optic magnetic sensor utilizing the Lorentzian force,” J. Lightwave Technol. 8(10), 1558–1564 (1990).
[CrossRef]

V. Annovazzi-Lodi, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence,” J. Lightwave Technol. 13(12), 2349–2353 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

J. E. Lenz, “A review of magnetic sensors,” Proc. IEEE 78(6), 973–989 (1990).
[CrossRef]

Other

V. Radojevic, D. Nedeljkovic, N. Talijan, D. Trifunovic, and R. Aleksic, “Optical fibers with composite magnetic coating for magnetic field sensing,” J. Magn. Magn. Mater. 272−276, E1755−E1756 (2004).
[CrossRef]

M. McCaig, and A. G. Clegg, Permanent Magnets in Theory and Practice, 2nd ed. (Wiley, New York, 1987).

W. E. Gettys, F. J. Keller, and M. J. Skove, Physics, Classical and Modern (McGraw-Hill, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sensing principle of an all-fiber Faraday magnet sensor.

Fig. 2
Fig. 2

Experimental configuration of an all-fiber magnet sensor. PM: polarization maintaining fiber; PZ: polarizing fiber.

Fig. 3
Fig. 3

Theoretical (solid) and measured (circle) magnetic density flux distribution Bz along the center axis z. The dashed lines represent ends of the magnet and the dotted line represents theoretical Bav, the magnetic density flux averaged over a 2-cm length along the axis z.

Fig. 4
Fig. 4

Measured and calculated relative transmission of an all-fiber magnet sensor.

Fig. 5
Fig. 5

Measured (circles) and theoretical (solid) Bav as a function of the z axis. The dashed lines represent the end of the magnet.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

B z ( z ) = B r 2 { z + l / 2 [ a 1 2 + ( z + l / 2 ) 2 ] 1 / 2 z + l / 2 [ a 2 2 + ( z + l / 2 ) 2 ] 1 / 2 z l / 2 [ a 1 2 + ( z l / 2 ) 2 ] 1 / 2 + z l / 2 [ a 2 2 + ( z l / 2 ) 2 ] 1 / 2 } ,
I / I 0 = cos 2 ( θ 0 + θ ) + sin 2 ( θ 0 + θ ) 10 ( Ex / 10 ) ,
Δ B = Δ I I 0 V L sin [ 2 ( θ 0 + θ ) ] ( 1 10 Ex / 10 ) = Δ I I 0 2 B max π sin [ 2 ( θ 0 + θ ) ] ( 1 10 Ex / 10 ) Δ I I 0 2 B max π sin [ 2 ( θ 0 + θ ) ] .

Metrics