Abstract

We fabricate a novel silicon-core silica-cladding optical fiber using high pressure chemical fluid deposition and investigate optical transmission characteristics at the telecommunications wavelength of 1550 nm. High thermo-optic and thermal expansion coefficients of silicon give rise to a thermal phase shift of 6.3 rad/K in a 4 mm-long, 6.9 µm diameter fiber acting as a Fabry-Perot resonator. Using both power and wavelength modulation, we observe all-optical bistability at a low threshold power of 15 mW, featuring intensity transitions of 1.4 dB occurring over <0.1 pm change in wavelength. Threshold powers for higher-order multistable states are predicted. Tristability is experimentally confirmed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Topics in Applied Physics,” 1–50, Silicon Photonics, L. Pavesi, D. J. Lockwood (Eds.), (Springer-Verlag Berlin Heidelberg 2004).
  2. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  3. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [CrossRef] [PubMed]
  4. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
    [CrossRef] [PubMed]
  5. L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. (to be published).
  6. S. L. McCall, H. M. Gibbs, and T. N. C. Venkatesan, “Optical transistor and bistability,” J. Opt. Soc. Am. 65, 1184 (1975).
  7. Hyatt M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, Inc., 1985), Chap. 3.
  8. P. W. Smith, E. H. Turner, and P. J. Maloney, “Electrooptic nonlinear Fabry-Perot devices,” IEEE J. Quantum Electron. 14(3), 207–212 (1978).
    [CrossRef]
  9. H. J. Eichler, “Optical multistability in silicon observed with a cw laser at 1.06 μm,” Opt. Commun. 45(1), 62–66 (1983).
    [CrossRef]
  10. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31(3), 341–343 (2006).
    [CrossRef] [PubMed]
  11. D. Jager, F. Forsmann, and B. Wedding, “Low-power optical bistability and multistability in a self-electro-optic silicon interferometer,” IEEE J. Quantum Electron. 21(9), 1453–1457 (1985).
    [CrossRef]
  12. N. F. Baril, B. Keshavari, J. R. Sparks, M. Krishnamurthi, I. Temnykh, P. J. A. Sazio, A. Borhan, V. Gopalan, and J. V. Badding, “Chemical Fluidic Deposition for Void-Free Filling of Extreme Aspect Ratio Templates,” Adv. Mater. (to be published).
    [PubMed]
  13. D.-J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
    [CrossRef]
  14. P. Roberts, F. Couny, H. Sabert, B. Mangan, T. Birks, J. Knight, and P. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005).
    [CrossRef] [PubMed]
  15. F. David, Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).
  16. J. M. Vaughan, The Fabry-Perot Interferometer, (IOP Publishing Ltd, 1989), Chap. 10.
  17. A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
    [CrossRef]
  18. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31(3), 341–343 (2006).
    [CrossRef] [PubMed]
  19. G. Vienne, Y. Li, L. Tong, and P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33(13), 1500–1502 (2008).
    [CrossRef] [PubMed]
  20. T. Graham, Reed and Andrew P. Knights, Silicon Photonics, (John Wiley & Sons, Ltd. 2004), Chap. 4.
  21. Ioffe Physico-Technical Institute, “New Semiconductor Materials. Characteristics and Properties,” (2001). http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/thermal.html

2008 (1)

2007 (1)

D.-J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

2006 (4)

Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31(3), 341–343 (2006).
[CrossRef] [PubMed]

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31(3), 341–343 (2006).
[CrossRef] [PubMed]

2005 (2)

P. Roberts, F. Couny, H. Sabert, B. Mangan, T. Birks, J. Knight, and P. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005).
[CrossRef] [PubMed]

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

2004 (1)

1985 (1)

D. Jager, F. Forsmann, and B. Wedding, “Low-power optical bistability and multistability in a self-electro-optic silicon interferometer,” IEEE J. Quantum Electron. 21(9), 1453–1457 (1985).
[CrossRef]

1983 (1)

H. J. Eichler, “Optical multistability in silicon observed with a cw laser at 1.06 μm,” Opt. Commun. 45(1), 62–66 (1983).
[CrossRef]

1978 (1)

P. W. Smith, E. H. Turner, and P. J. Maloney, “Electrooptic nonlinear Fabry-Perot devices,” IEEE J. Quantum Electron. 14(3), 207–212 (1978).
[CrossRef]

1975 (1)

S. L. McCall, H. M. Gibbs, and T. N. C. Venkatesan, “Optical transistor and bistability,” J. Opt. Soc. Am. 65, 1184 (1975).

Almeida, V. R.

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Badding, J. V.

D.-J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. (to be published).

N. F. Baril, B. Keshavari, J. R. Sparks, M. Krishnamurthi, I. Temnykh, P. J. A. Sazio, A. Borhan, V. Gopalan, and J. V. Badding, “Chemical Fluidic Deposition for Void-Free Filling of Extreme Aspect Ratio Templates,” Adv. Mater. (to be published).
[PubMed]

Baril, N. F.

D.-J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. (to be published).

N. F. Baril, B. Keshavari, J. R. Sparks, M. Krishnamurthi, I. Temnykh, P. J. A. Sazio, A. Borhan, V. Gopalan, and J. V. Badding, “Chemical Fluidic Deposition for Void-Free Filling of Extreme Aspect Ratio Templates,” Adv. Mater. (to be published).
[PubMed]

Berger, V.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

Birks, T.

Borhan, A.

N. F. Baril, B. Keshavari, J. R. Sparks, M. Krishnamurthi, I. Temnykh, P. J. A. Sazio, A. Borhan, V. Gopalan, and J. V. Badding, “Chemical Fluidic Deposition for Void-Free Filling of Extreme Aspect Ratio Templates,” Adv. Mater. (to be published).
[PubMed]

Calkins, J.

D.-J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Calligaro, M.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

Couny, F.

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

De Rossi, A.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

Ducci, S.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

Eichler, H. J.

H. J. Eichler, “Optical multistability in silicon observed with a cw laser at 1.06 μm,” Opt. Commun. 45(1), 62–66 (1983).
[CrossRef]

Fathpour, S.

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Forsmann, F.

D. Jager, F. Forsmann, and B. Wedding, “Low-power optical bistability and multistability in a self-electro-optic silicon interferometer,” IEEE J. Quantum Electron. 21(9), 1453–1457 (1985).
[CrossRef]

Gibbs, H. M.

S. L. McCall, H. M. Gibbs, and T. N. C. Venkatesan, “Optical transistor and bistability,” J. Opt. Soc. Am. 65, 1184 (1975).

Gopalan, V.

D.-J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

N. F. Baril, B. Keshavari, J. R. Sparks, M. Krishnamurthi, I. Temnykh, P. J. A. Sazio, A. Borhan, V. Gopalan, and J. V. Badding, “Chemical Fluidic Deposition for Void-Free Filling of Extreme Aspect Ratio Templates,” Adv. Mater. (to be published).
[PubMed]

Grelu, P.

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Healy, N.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. (to be published).

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Jager, D.

D. Jager, F. Forsmann, and B. Wedding, “Low-power optical bistability and multistability in a self-electro-optic silicon interferometer,” IEEE J. Quantum Electron. 21(9), 1453–1457 (1985).
[CrossRef]

Jalali, B.

Kang, H.

D.-J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Keshavari, B.

N. F. Baril, B. Keshavari, J. R. Sparks, M. Krishnamurthi, I. Temnykh, P. J. A. Sazio, A. Borhan, V. Gopalan, and J. V. Badding, “Chemical Fluidic Deposition for Void-Free Filling of Extreme Aspect Ratio Templates,” Adv. Mater. (to be published).
[PubMed]

Knight, J.

Krishnamurthi, M.

N. F. Baril, B. Keshavari, J. R. Sparks, M. Krishnamurthi, I. Temnykh, P. J. A. Sazio, A. Borhan, V. Gopalan, and J. V. Badding, “Chemical Fluidic Deposition for Void-Free Filling of Extreme Aspect Ratio Templates,” Adv. Mater. (to be published).
[PubMed]

Lagonigro, L.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. (to be published).

Lanco, L.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

Li, Y.

Lipson, M.

Maloney, P. J.

P. W. Smith, E. H. Turner, and P. J. Maloney, “Electrooptic nonlinear Fabry-Perot devices,” IEEE J. Quantum Electron. 14(3), 207–212 (1978).
[CrossRef]

Mangan, B.

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

McCall, S. L.

S. L. McCall, H. M. Gibbs, and T. N. C. Venkatesan, “Optical transistor and bistability,” J. Opt. Soc. Am. 65, 1184 (1975).

Ortiz, V.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

Peacock, A. C.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. (to be published).

Ramirez, M. O.

D.-J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Roberts, P.

Russell, P.

Sabert, H.

Sagnes, I.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

Sazio, P. J. A.

D.-J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. (to be published).

N. F. Baril, B. Keshavari, J. R. Sparks, M. Krishnamurthi, I. Temnykh, P. J. A. Sazio, A. Borhan, V. Gopalan, and J. V. Badding, “Chemical Fluidic Deposition for Void-Free Filling of Extreme Aspect Ratio Templates,” Adv. Mater. (to be published).
[PubMed]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Smith, P. W.

P. W. Smith, E. H. Turner, and P. J. Maloney, “Electrooptic nonlinear Fabry-Perot devices,” IEEE J. Quantum Electron. 14(3), 207–212 (1978).
[CrossRef]

Sparks, J. R.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. (to be published).

N. F. Baril, B. Keshavari, J. R. Sparks, M. Krishnamurthi, I. Temnykh, P. J. A. Sazio, A. Borhan, V. Gopalan, and J. V. Badding, “Chemical Fluidic Deposition for Void-Free Filling of Extreme Aspect Ratio Templates,” Adv. Mater. (to be published).
[PubMed]

Temnykh, I.

N. F. Baril, B. Keshavari, J. R. Sparks, M. Krishnamurthi, I. Temnykh, P. J. A. Sazio, A. Borhan, V. Gopalan, and J. V. Badding, “Chemical Fluidic Deposition for Void-Free Filling of Extreme Aspect Ratio Templates,” Adv. Mater. (to be published).
[PubMed]

Tong, L.

Turner, E. H.

P. W. Smith, E. H. Turner, and P. J. Maloney, “Electrooptic nonlinear Fabry-Perot devices,” IEEE J. Quantum Electron. 14(3), 207–212 (1978).
[CrossRef]

Venkatesan, T. N. C.

S. L. McCall, H. M. Gibbs, and T. N. C. Venkatesan, “Optical transistor and bistability,” J. Opt. Soc. Am. 65, 1184 (1975).

Vienne, G.

Wedding, B.

D. Jager, F. Forsmann, and B. Wedding, “Low-power optical bistability and multistability in a self-electro-optic silicon interferometer,” IEEE J. Quantum Electron. 21(9), 1453–1457 (1985).
[CrossRef]

Won, D.-J.

D.-J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Xu, Q.

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Adv. Mater. (1)

N. F. Baril, B. Keshavari, J. R. Sparks, M. Krishnamurthi, I. Temnykh, P. J. A. Sazio, A. Borhan, V. Gopalan, and J. V. Badding, “Chemical Fluidic Deposition for Void-Free Filling of Extreme Aspect Ratio Templates,” Adv. Mater. (to be published).
[PubMed]

Appl. Phys. Lett. (2)

D.-J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. (to be published).

IEEE J. Quantum Electron. (2)

P. W. Smith, E. H. Turner, and P. J. Maloney, “Electrooptic nonlinear Fabry-Perot devices,” IEEE J. Quantum Electron. 14(3), 207–212 (1978).
[CrossRef]

D. Jager, F. Forsmann, and B. Wedding, “Low-power optical bistability and multistability in a self-electro-optic silicon interferometer,” IEEE J. Quantum Electron. 21(9), 1453–1457 (1985).
[CrossRef]

J. Appl. Phys. (1)

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

S. L. McCall, H. M. Gibbs, and T. N. C. Venkatesan, “Optical transistor and bistability,” J. Opt. Soc. Am. 65, 1184 (1975).

Opt. Commun. (1)

H. J. Eichler, “Optical multistability in silicon observed with a cw laser at 1.06 μm,” Opt. Commun. 45(1), 62–66 (1983).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Science (1)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Other (6)

Hyatt M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, Inc., 1985), Chap. 3.

“Topics in Applied Physics,” 1–50, Silicon Photonics, L. Pavesi, D. J. Lockwood (Eds.), (Springer-Verlag Berlin Heidelberg 2004).

T. Graham, Reed and Andrew P. Knights, Silicon Photonics, (John Wiley & Sons, Ltd. 2004), Chap. 4.

Ioffe Physico-Technical Institute, “New Semiconductor Materials. Characteristics and Properties,” (2001). http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/thermal.html

F. David, Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).

J. M. Vaughan, The Fabry-Perot Interferometer, (IOP Publishing Ltd, 1989), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Silicon-core, silica-cladding fiber mounted inside glass capillary. (a) 30x optical image of polished endface; (b) 9kx scanning electron micrograph of polished endface; (c) IR transmission through silicon core; (d) COMSOL simulation of intensity distribution of fundamental mode in silicon core.

Fig. 2
Fig. 2

Normalized transmission through silicon fiber as a function of wavelength: (a) Pin = 2.0 mW, symmetric Fabry-Perot resonances; (b) Pin = 11.0 mW, strong asymmetry present in resonances; (c) Pin = 19.5 mW, transmission exhibits sharp transitions and hysteresis.

Fig. 3
Fig. 3

Silicon-core, silica-cladding fiber as a Fabry-Perot resonator. Optical losses in core heat the cavity, resulting in a thermal phase shift of resonance peaks.

Fig. 4
Fig. 4

Transmission through silicon fiber as a function of laser power. (a) Power scan 0 mW to 60 mW, with inset of hysteresis loop around Pin = 42 mW; (b) Using graphical method to model power scan. Inset shows hysteresis loop in four steps: (1) increasing Pin in “low” state; (2) sharp transition to “high” state; (3) decreasing Pin in “high” state; (4) sharp transition back to “low” state.

Fig. 5
Fig. 5

Transmission through silicon fiber as a function of laser wavelength. (a) Wavelength scan 1549.8 nm to 1550.1 nm, with hysteresis loop centered at 1549.967 nm; (b) Using graphical method to model wavelength scan. Inset shows hysteresis loop in four steps: (1) increasing λ in “high” state; (2) sharp transition to “low” state; (3) decreasing λ in “low” state; (4) sharp transition back to “high” state.

Fig. 6
Fig. 6

(a) Predicting Multistability: Using the graphical solution, we can predict the threshold power required to achieve nth-order multistability. The highest multistability shown here is of the sixth order, meaning six stable states exist for one incident power. (b) Power scan up to Pin = 80 mW, clearly demonstrating regions of tristability. Green lines show theoretical predictions for the middle transmission states.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P t P i n = [ ( 1 R ) 2 σ ( 1 R σ ) 2 + 4 R σ sin 2 ( φ t o t 2 ) ]
P r e f P i n = [ R ( 1 σ ) 2 + 4 R σ sin 2 ( φ t o t 2 ) ( 1 R σ ) 2 + 4 R σ sin 2 ( φ t o t 2 ) ]
P l o s s P i n = 1 [ P t P i n + P r e f P i n ]
φ t o t = [ φ o + φ λ ] = φ o + 2 π ( 2 L o n o ) ( 1 λ 1 λ o )
φ t o t = [ φ 0 + ϕ λ + φ T ] = φ 0 + 2 π ( 2 L o n o ) ( 1 λ 1 λ o ) + β P l o s s
β = φ t o t P l o s s = T P l o s s × φ t o t T = ε × 2 π 2 L o λ o ( n o 1 L L T + n T )
P t P i n = [ P t P l o s s 1 β P i n ] ( β P l o s s ) = [ γ 1 β P i n ] φ T
γ = P t P l o s s = P t P i n P i n P l o s s = [ ( 1 R ) 2 σ ( 1 R σ ) 2 ( 1 R ) 2 σ R ( 1 σ ) 2 ]

Metrics