Abstract

The use of an unidirectional auxiliary pump at approximately 1600 nm in conjunction with a 980 nm primary pump for Ytterbium (Yb3+)-sensitized-Thulium (Tm3+)-doped single mode silica fiber (YTDF) is found to be very effective to activate the most significant resonance energy transfer from Yb3+ to Tm3+, in order to obtain significant emission in the near-infrared. The resulting laser performance of the YTDF at 1874 nm is reported here. The influence of the Tm3+/Yb3+ concentration, their relative proportions and the host glass composition on the lasing efficiency has also been investigated to optimize the fiber parameters for maximum laser output power.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Energy-transfer parameters in a Tm/Yb doped single mode silica fiber

Atasi Pal, Anirban Dhar, Shyamal Das, K. Annapurna, Anka Schwuchow, Tong Sun, Kenneth T. V. Grattan, and Ranjan Sen
J. Opt. Soc. Am. B 27(12) 2714-2720 (2010)

Visible and near infra-red up-conversion in Tm3+/Yb3+ co-doped silica fibers under 980 nm excitation

D. A. Simpson, W. E. K Gibbs, S. F. Collins, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, and G. W. Baxter
Opt. Express 16(18) 13781-13799 (2008)

Gain-shift induced by dopant concentration ratio in a thulium-bismuth doped fiber amplifier

Siamak Dawazdah Emami, Atieh Zarifi, Hairul Azhar Abdul Rashid, Ahmad Razif Muhammad, Mukul Chandra Paul, Arindam Halder, Shyamal Kumar Bhadra, Harith Ahmad, and Sulaiman Wadi Harun
Opt. Express 22(6) 7075-7086 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson and T. A. King, “Theoretical Modelling of Tm-Doped Silica Fiber Lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
    [Crossref]
  2. S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
    [Crossref]
  3. R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fiber laser with high power single mode output at 2 μm,” Electron. Lett. 36(8), 711–712 (2000).
    [Crossref]
  4. S. D. Jackson and S. Mossman, “Efficiency dependence on theTm3+ Al3+ concentrations for Tm3+ doped silica double-clad fiber lasers,” Appl. Opt. 42(15), 2702–2707 (2003).
    [Crossref] [PubMed]
  5. P. R. Watekar, S. Ju, and W. T. Han, “800-nm Upconversion Emission in Yb-Sensitized Tm-Doped Optical Fiber,” IEEE Photon. Technol. Lett. 18(15), 1609–1611 (2006).
    [Crossref]
  6. J. Chang, Q. P. Wang, X. Zhang, Z. Liu, Z. Liu, and G. D. Peng, “S-band optical amplification by an internally generated pump in thulium ytterbium codoped fiber,” Opt. Express 13(11), 3902–3912 (2005).
    [Crossref] [PubMed]
  7. S. D. Jackson, “Power scaling method for 2 µm diode-cladding-pumped Tm3+ doped silica fiber lasers that uses Yb3+ codoping,” Opt. Lett. 28(22), 2192–2194 (2003).
    [Crossref] [PubMed]
  8. S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).
  9. M. J. F. Digonnet, “Rare-Earth-Doped Fiber Lasers and Amplifiers” Optical Engineering, Second ed., Marcel Dekker, New York.
  10. B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+- 3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids 353(29), 2767–2773 (2007).
    [Crossref]

2007 (1)

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+- 3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids 353(29), 2767–2773 (2007).
[Crossref]

2006 (1)

P. R. Watekar, S. Ju, and W. T. Han, “800-nm Upconversion Emission in Yb-Sensitized Tm-Doped Optical Fiber,” IEEE Photon. Technol. Lett. 18(15), 1609–1611 (2006).
[Crossref]

2005 (1)

2003 (2)

2000 (1)

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fiber laser with high power single mode output at 2 μm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

1999 (1)

1998 (1)

1996 (1)

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).

Blanc, W.

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+- 3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids 353(29), 2767–2773 (2007).
[Crossref]

Chang, J.

Clarkson, W. A.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fiber laser with high power single mode output at 2 μm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

Dussardier, B.

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+- 3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids 353(29), 2767–2773 (2007).
[Crossref]

Faure, B.

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+- 3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids 353(29), 2767–2773 (2007).
[Crossref]

Grudinin, A. B.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fiber laser with high power single mode output at 2 μm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

Han, W. T.

P. R. Watekar, S. Ju, and W. T. Han, “800-nm Upconversion Emission in Yb-Sensitized Tm-Doped Optical Fiber,” IEEE Photon. Technol. Lett. 18(15), 1609–1611 (2006).
[Crossref]

Hanna, D. C.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fiber laser with high power single mode output at 2 μm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

Hayward, R. A.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fiber laser with high power single mode output at 2 μm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

Jackson, S. D.

Ju, S.

P. R. Watekar, S. Ju, and W. T. Han, “800-nm Upconversion Emission in Yb-Sensitized Tm-Doped Optical Fiber,” IEEE Photon. Technol. Lett. 18(15), 1609–1611 (2006).
[Crossref]

King, T. A.

Laporta, P.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).

Liu, Z.

Longhi, S.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).

Monnom, G.

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+- 3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids 353(29), 2767–2773 (2007).
[Crossref]

Mossman, S.

Nilsson, J.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fiber laser with high power single mode output at 2 μm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

Peng, G. D.

Svelto, C.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).

Svelto, O.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).

Taccheo, S.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).

Turner, P. W.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fiber laser with high power single mode output at 2 μm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

Wang, Q. P.

Watekar, P. R.

P. R. Watekar, S. Ju, and W. T. Han, “800-nm Upconversion Emission in Yb-Sensitized Tm-Doped Optical Fiber,” IEEE Photon. Technol. Lett. 18(15), 1609–1611 (2006).
[Crossref]

Zhang, X.

Appl. Opt. (1)

Appl. Phys. B (1)

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).

Electron. Lett. (1)

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, and D. C. Hanna, “Efficient cladding-pumped Tm-doped silica fiber laser with high power single mode output at 2 μm,” Electron. Lett. 36(8), 711–712 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. R. Watekar, S. Ju, and W. T. Han, “800-nm Upconversion Emission in Yb-Sensitized Tm-Doped Optical Fiber,” IEEE Photon. Technol. Lett. 18(15), 1609–1611 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+- 3H4 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids 353(29), 2767–2773 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Other (1)

M. J. F. Digonnet, “Rare-Earth-Doped Fiber Lasers and Amplifiers” Optical Engineering, Second ed., Marcel Dekker, New York.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Energy level of Tm3+/Yb3+ in silica using Russell-Saunders Coupling. All transition wavelengths are in nm.

Fig. 2
Fig. 2

Schematic of Laser set up at 1874 nm using Yb3+ sensitized Tm3+ doped fiber. Laser spectrum recorded in monochromator is shown in inset.

Fig. 3
Fig. 3

GSA cross-section spectra of YTDF (YTF-A-10) with energy level designation for each absorption peak.

Fig. 4
Fig. 4

Absorption and Emission cross sections of YTDF (YTF-A-10).

Fig. 5
Fig. 5

Laser output power at 1874 nm against 980 nm pump for fibers with different host compositions.

Fig. 6
Fig. 6

Laser output power at 1874nm against 980nm pump (480 mW) for fibers with different Yb 3+ :Tm 3+ ratio.

Fig. 7
Fig. 7

(a) Laser output power at 1874 nm against 980 nm pump for fibers with different Tm3 + concentrations, withYb3+:Tm3+ ratio being 1 (b) The variation of the maximum laser output power with Tm3+ concentration.

Tables (3)

Tables Icon

Table 1 Core composition and Tm, Yb, Al, Ge, P ion concentration of YTDF

Tables Icon

Table 2 Proportion of Yb3+ and Tm3+ in YTDF

Tables Icon

Table 3 Variation of Tm3+ concentration in Alumino-silicate fiber

Metrics