Abstract

We demonstrate the generation of an optical frequency comb (OFC) with a Gaussian spectrum using a continuous-wave (CW) laser, based on spatial convolution of a slit and a periodically moving optical beam spot in a linear time-to-space mapping system. A CW optical beam is linearly mapped to a spatial signal using two sinusoidal electro-optic (EO) deflections and an OFC is extracted by inserting a narrow spatial slit in the Fourier-transform plane of a second EO deflector (EOD). The spectral shape of the OFC corresponds to the spatial beam profile in the near-field region of the second EOD, which can be manipulated by a spatial filter without spectral dispersers. In a proof-of-concept experiment, a 16.25-GHz-spaced, 240-GHz-wide Gaussian-envelope OFC (corresponding to 1.8 ps Gaussian pulse generation) was demonstrated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Hisatake, Y. Nakase, K. Shibuya, and T. Kobayashi, "Generation of flat power-envelope terahertz-wide modulation sidebands from a continuous-wave laser based on an external electro-optic phase modulator," Opt. Lett. 30,777-779 (2005).
    [CrossRef] [PubMed]
  2. I. L. Gheorma and G. K. Gopalakrishnan, "Flat frequency comb generation with an integrated dual-parallel modulator," IEEE Photon. Technol. Lett. 19,1011-1013 (2007).
    [CrossRef]
  3. T. Sakamoto, T. Kawanishi, and M. Izutsu, "Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator," Electron. Lett. 43,1039-1040 (2007).
    [CrossRef]
  4. V. Torres-Company, J. Lancis, and P. Andres, "Lossless equalization of frequency combs," Opt. Lett. 33,1822-1824 (2008).
    [CrossRef] [PubMed]
  5. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. W. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nature Photon. 1,463-467 (2007).
    [CrossRef]
  6. Y. Takita, F. Futami, M Doi, and S. Watanabe, "Highly stable ultra-short pulse generation by filtering out flat optical frequency components," Conference on Laser and Electro-Optics (CLEOf04) (Optical Society of America, 2004), paper CTuN1 (2004).
  7. T. Sakamoto, T. Kawanishi, and M. Tsuchiya, "10 GHz, 2.4 ps pulse generation using a single-stage dual-drive Mach-Zehnder modulator," Opt. Lett. 33,890-892 (2008).
    [CrossRef] [PubMed]
  8. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, "Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating," J. Lightwave Technol. 19,746-752 (2001).
    [CrossRef]
  9. S. Hisatake, K. Shibuya, and T. Kobayashi, "Ultrafast traveling-wave electro-optic deflector using domainengineered LiTaO3 crystal," Appl. Phys. Lett. 87,081101 (2005).
    [CrossRef]
  10. S. Hisatake, K. Tada, and T. Nagatsuma, "Linear time-to-space mapping system using double electrooptic beam deflectors," Opt. Express 16, 21753-21761 (2008).
    [CrossRef] [PubMed]
  11. S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, "3 Tbit/s (160 Gbit/s 19 channel) optical TDM and WDM transmission experiment," Electron. Lett. 35,826-827 (1999).
    [CrossRef]
  12. T. Kobayashi, H. Ideno, and T. Sueta, "Generation of arbitrarily shaped optical pulses in the subnanosecond to picosecond range using a fast electrooptic deflector," IEEE J. Quantum Electron. 16,132-136 (1980).
    [CrossRef]
  13. T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator," Appl. Phys. Lett. 21,341-343 (1972).
    [CrossRef]
  14. T. Kobayashi, A. Morimoto, B. Y. Lee, and T. Sueta, "A new method of ultrashort pulse generation: Modified Fabry-Perot electrooptic modulator," in Ultrafast Phenomena VII, ed. by C. Harris et al., (Springer Verlag, Berlin 1991) pp. 41-44.
  15. K. Imai, M. Kourogi, and M. Ohtsu, "30-THz span optical frequency comb generation by self-phase modulation in an optical fiber," IEEE J. Quantum Electron. 34,54-60 (1998).
    [CrossRef]
  16. M. Shen, X. Xu, and K. K. Y. Wong, "160-Gb/s OTDM de-multiplexing based on a pulsed-pump parametric wavelength exchange," Conference on Laser and Electro-Optics (CLEOf09) (Optical Society of America, 2009), paper JThE77 (2009).
  17. X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, and A. E. Willner, "320-Gbit/s optical time multiplexing of two 160-Gbit/s channels using supercontinuum generation to achieve high-speed WDM-to-TDM," Conference on Laser and Electro-Optics (CLEOf09) (Optical Society of America, 2009), paper CMZ7 (2009).

2008

2007

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. W. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nature Photon. 1,463-467 (2007).
[CrossRef]

I. L. Gheorma and G. K. Gopalakrishnan, "Flat frequency comb generation with an integrated dual-parallel modulator," IEEE Photon. Technol. Lett. 19,1011-1013 (2007).
[CrossRef]

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator," Electron. Lett. 43,1039-1040 (2007).
[CrossRef]

2005

2001

1999

S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, "3 Tbit/s (160 Gbit/s 19 channel) optical TDM and WDM transmission experiment," Electron. Lett. 35,826-827 (1999).
[CrossRef]

1998

K. Imai, M. Kourogi, and M. Ohtsu, "30-THz span optical frequency comb generation by self-phase modulation in an optical fiber," IEEE J. Quantum Electron. 34,54-60 (1998).
[CrossRef]

1980

T. Kobayashi, H. Ideno, and T. Sueta, "Generation of arbitrarily shaped optical pulses in the subnanosecond to picosecond range using a fast electrooptic deflector," IEEE J. Quantum Electron. 16,132-136 (1980).
[CrossRef]

1972

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator," Appl. Phys. Lett. 21,341-343 (1972).
[CrossRef]

Andres, P.

Cho, Y.

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator," Appl. Phys. Lett. 21,341-343 (1972).
[CrossRef]

Ellis, A. D.

Gheorma, I. L.

I. L. Gheorma and G. K. Gopalakrishnan, "Flat frequency comb generation with an integrated dual-parallel modulator," IEEE Photon. Technol. Lett. 19,1011-1013 (2007).
[CrossRef]

Gopalakrishnan, G. K.

I. L. Gheorma and G. K. Gopalakrishnan, "Flat frequency comb generation with an integrated dual-parallel modulator," IEEE Photon. Technol. Lett. 19,1011-1013 (2007).
[CrossRef]

Hisatake, S.

Huang, C.-B.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. W. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nature Photon. 1,463-467 (2007).
[CrossRef]

Ibsen, M.

Ideno, H.

T. Kobayashi, H. Ideno, and T. Sueta, "Generation of arbitrarily shaped optical pulses in the subnanosecond to picosecond range using a fast electrooptic deflector," IEEE J. Quantum Electron. 16,132-136 (1980).
[CrossRef]

Imai, K.

K. Imai, M. Kourogi, and M. Ohtsu, "30-THz span optical frequency comb generation by self-phase modulation in an optical fiber," IEEE J. Quantum Electron. 34,54-60 (1998).
[CrossRef]

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator," Electron. Lett. 43,1039-1040 (2007).
[CrossRef]

Jiang, Z.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. W. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nature Photon. 1,463-467 (2007).
[CrossRef]

Kawanishi, S.

S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, "3 Tbit/s (160 Gbit/s 19 channel) optical TDM and WDM transmission experiment," Electron. Lett. 35,826-827 (1999).
[CrossRef]

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, "10 GHz, 2.4 ps pulse generation using a single-stage dual-drive Mach-Zehnder modulator," Opt. Lett. 33,890-892 (2008).
[CrossRef] [PubMed]

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator," Electron. Lett. 43,1039-1040 (2007).
[CrossRef]

Kobayashi, T.

S. Hisatake, Y. Nakase, K. Shibuya, and T. Kobayashi, "Generation of flat power-envelope terahertz-wide modulation sidebands from a continuous-wave laser based on an external electro-optic phase modulator," Opt. Lett. 30,777-779 (2005).
[CrossRef] [PubMed]

S. Hisatake, K. Shibuya, and T. Kobayashi, "Ultrafast traveling-wave electro-optic deflector using domainengineered LiTaO3 crystal," Appl. Phys. Lett. 87,081101 (2005).
[CrossRef]

T. Kobayashi, H. Ideno, and T. Sueta, "Generation of arbitrarily shaped optical pulses in the subnanosecond to picosecond range using a fast electrooptic deflector," IEEE J. Quantum Electron. 16,132-136 (1980).
[CrossRef]

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator," Appl. Phys. Lett. 21,341-343 (1972).
[CrossRef]

Kourogi, M.

K. Imai, M. Kourogi, and M. Ohtsu, "30-THz span optical frequency comb generation by self-phase modulation in an optical fiber," IEEE J. Quantum Electron. 34,54-60 (1998).
[CrossRef]

Lancis, J.

Leaird, D. E.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. W. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nature Photon. 1,463-467 (2007).
[CrossRef]

Matsuo, Y.

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator," Appl. Phys. Lett. 21,341-343 (1972).
[CrossRef]

Mori, K.

S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, "3 Tbit/s (160 Gbit/s 19 channel) optical TDM and WDM transmission experiment," Electron. Lett. 35,826-827 (1999).
[CrossRef]

Nagatsuma, T.

Nakase, Y.

Ohtsu, M.

K. Imai, M. Kourogi, and M. Ohtsu, "30-THz span optical frequency comb generation by self-phase modulation in an optical fiber," IEEE J. Quantum Electron. 34,54-60 (1998).
[CrossRef]

Petropoulos, P.

Richardson, D. J.

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, "10 GHz, 2.4 ps pulse generation using a single-stage dual-drive Mach-Zehnder modulator," Opt. Lett. 33,890-892 (2008).
[CrossRef] [PubMed]

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator," Electron. Lett. 43,1039-1040 (2007).
[CrossRef]

Shake, I.

S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, "3 Tbit/s (160 Gbit/s 19 channel) optical TDM and WDM transmission experiment," Electron. Lett. 35,826-827 (1999).
[CrossRef]

Shibuya, K.

Sueta, T.

T. Kobayashi, H. Ideno, and T. Sueta, "Generation of arbitrarily shaped optical pulses in the subnanosecond to picosecond range using a fast electrooptic deflector," IEEE J. Quantum Electron. 16,132-136 (1980).
[CrossRef]

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator," Appl. Phys. Lett. 21,341-343 (1972).
[CrossRef]

Tada, K.

Takara, H.

S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, "3 Tbit/s (160 Gbit/s 19 channel) optical TDM and WDM transmission experiment," Electron. Lett. 35,826-827 (1999).
[CrossRef]

Torres-Company, V.

Tsuchiya, M.

Uchiyama, K.

S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, "3 Tbit/s (160 Gbit/s 19 channel) optical TDM and WDM transmission experiment," Electron. Lett. 35,826-827 (1999).
[CrossRef]

Weiner, A. W.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. W. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nature Photon. 1,463-467 (2007).
[CrossRef]

Appl. Phys. Lett.

S. Hisatake, K. Shibuya, and T. Kobayashi, "Ultrafast traveling-wave electro-optic deflector using domainengineered LiTaO3 crystal," Appl. Phys. Lett. 87,081101 (2005).
[CrossRef]

T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator," Appl. Phys. Lett. 21,341-343 (1972).
[CrossRef]

Electron. Lett.

S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, "3 Tbit/s (160 Gbit/s 19 channel) optical TDM and WDM transmission experiment," Electron. Lett. 35,826-827 (1999).
[CrossRef]

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator," Electron. Lett. 43,1039-1040 (2007).
[CrossRef]

IEEE J. Quantum Electron.

T. Kobayashi, H. Ideno, and T. Sueta, "Generation of arbitrarily shaped optical pulses in the subnanosecond to picosecond range using a fast electrooptic deflector," IEEE J. Quantum Electron. 16,132-136 (1980).
[CrossRef]

K. Imai, M. Kourogi, and M. Ohtsu, "30-THz span optical frequency comb generation by self-phase modulation in an optical fiber," IEEE J. Quantum Electron. 34,54-60 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

I. L. Gheorma and G. K. Gopalakrishnan, "Flat frequency comb generation with an integrated dual-parallel modulator," IEEE Photon. Technol. Lett. 19,1011-1013 (2007).
[CrossRef]

J. Lightwave Technol.

Nature Photon.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. W. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nature Photon. 1,463-467 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Y. Takita, F. Futami, M Doi, and S. Watanabe, "Highly stable ultra-short pulse generation by filtering out flat optical frequency components," Conference on Laser and Electro-Optics (CLEOf04) (Optical Society of America, 2004), paper CTuN1 (2004).

M. Shen, X. Xu, and K. K. Y. Wong, "160-Gb/s OTDM de-multiplexing based on a pulsed-pump parametric wavelength exchange," Conference on Laser and Electro-Optics (CLEOf09) (Optical Society of America, 2009), paper JThE77 (2009).

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, and A. E. Willner, "320-Gbit/s optical time multiplexing of two 160-Gbit/s channels using supercontinuum generation to achieve high-speed WDM-to-TDM," Conference on Laser and Electro-Optics (CLEOf09) (Optical Society of America, 2009), paper CMZ7 (2009).

T. Kobayashi, A. Morimoto, B. Y. Lee, and T. Sueta, "A new method of ultrashort pulse generation: Modified Fabry-Perot electrooptic modulator," in Ultrafast Phenomena VII, ed. by C. Harris et al., (Springer Verlag, Berlin 1991) pp. 41-44.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic diagram of (a) line-by-line shaping, (b) optical frequency comb shaping using an optical bandpass filter, and (c) the proposed technique. In (c), the laser beam is deflected in the horizontal direction (y axis) by EOD1 and then deflected in the vertical direction (x axis) by EOD2. In the mapping plane, a circular beam trajectory is realized by adjusting the relative deflection phase. OFC: optical frequency comb, OBPF: optical bandpass filter, EOD: electro-optic deflector, f: focal length of the Fourier-transform lens.

Fig. 2.
Fig. 2.

OFC generation scheme using a spatial slit in a linear time-to-space mapping system. The OFC is generated by convolution of the narrow spatial slit with the periodically moving optical beam spot.

Fig. 3.
Fig. 3.

(a) Calculated power spectrum and (b) spectral phase of the OFC. The deflection frequency is assumed to be 16.25 GHz.

Fig. 4.
Fig. 4.

(a) Typical calculated pulse shape and (b) OFC envelope. ws is the slit half-width and wb is the Gaussian beam radius.

Fig. 5.
Fig. 5.

(a) Calculated normalized pulse width and (b) time-frequency bandwidth product as a function of the normalized slit width. TFB: Time-frequency bandwidth product.

Fig. 6.
Fig. 6.

(a) Schematic diagram of the single-chip quasi-velocity-matched (QVM) EODs. The asymmetric U-shaped microstrip line is the modulation electrode. The ratio of the interaction lengths of the two EODs is set to 1:0.73 to realize the same resolvable spot number. (b) Linear time-to-space mapping system using single-chip QVM-EODs. F.T. lens: Fourier-transform lens.

Fig. 7.
Fig. 7.

Beam trajectories observed in the mapping plane. The relative deflection phase ϕ is set to (a) 0 rad, (b) π/4 rad, (c) π/2 rad, and (d) -π/4 rad.

Fig. 8.
Fig. 8.

(a) Typical circular trajectory. The temporal resolution can be calculated from the diameter of the circular trajectory (2Wd) and the beam spot size (2Wb) in the mapping plane. (b) Achieved temporal resolution as a function of the square root of the modulation power. Solid line is theoretical curve fitted to the data.

Fig. 9.
Fig. 9.

(a) Generated typical OFC lines. Solid curve is Gaussian function fitted to the OFC lines. (b) Beam profile in the mapping plane. Hollow circles are experimental data obtained by profiling the image obtained using a CCD camera. The solid curve is the Gaussian function fitted to the data.

Fig. 10.
Fig. 10.

OFC width as a function of the square root of the modulation power. Hollow circles are experimental data. Solid line is calculated from the temporal resolution of the system using ΔτΔν = 0.44.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ τ 0 = Δ τ T = W b π W d ,

Metrics