Abstract

We propose a novel optical 90° hybrid employing a paired-interference-based tapered 2×4 multimode interference coupler and a 2×2 multimode interference coupler. It was experimentally shown that the proposed 90° hybrid has very short device length of less than 227 μm and is never accompanied by any waveguide intersections for coupling to balanced photodiodes. The proposed device exhibited quadrature phase response with a common-mode rejection ratio of more than 20dB and a phase deviation of less than 5° over C-band spectral range.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
    [CrossRef]
  2. M. Seimetz and C. M. Weinert, “Options, feasibility and availability of 2×4 90° hybrids for coherent optical systems,” J. Lightwave Technol. 24(3), 1317–1322 (2006).
    [CrossRef]
  3. D. Hoffmann, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
    [CrossRef]
  4. R. Kunkel, H. G. Bach, D. Hoffmann, C. M. Weinert, I. Molina-Fernandez, and R. Halir, “First monolithic InP-based 90° hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” Proc. IPRM 2009, paper TuB2.2 (2009).
  5. C. R. Doerr, D. M. Gill, A. H. Gnauck, L. L. Buhl, P. J. Winzer, M. A. Cappuzzo, A. Wong-Foy, E. Y. Chen, and L. T. Gomez, “Monolithic demodulator for 40-Gb/s DQPSK using a star coupler,” J. Lightwave Technol. 24(1), 171–174 (2006).
    [CrossRef]
  6. C. R. Doerr, L. Zhangl, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett. 19(21), 1765–1767 (2007).
    [CrossRef]
  7. L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on Silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
    [CrossRef]
  8. H. G. Bach, A. Matiss, C. C. Leonhardt, R. Kunkel, D. Schmidt, M. Schell, and A. Umbach, “Monolithic 90° hybrid with balanced pin photodiodes for 100 Gbit/s PM-QPSK receiver applications,” Proc. OFC 2009, paper OMK5 (2009).
  9. M. Baudreau, M. Poirier, G. Yoffe, and B. Pezeshki, “An integrated InP coherent receiver for 40 and 100 Gb/sec telecommunications systems,” Proc. OFC 2009, paper OMK6 (2009).
  10. S.-H. Jeong and K. Morito, “Optical 90° hybrid with broad operating bandwidth of 94 nm,” Opt. Lett. 34(22), 3505–3507 (2009).
    [CrossRef] [PubMed]
  11. L. B. Soldano and C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [CrossRef]
  12. D. S. Levy, R. Scarmozzino, and R. M. Osgood, “Length reduction of tapered N×N MMI devices,” IEEE Photon. Technol. Lett. 10(6), 830–832 (1998).
    [CrossRef]

2009 (2)

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on Silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
[CrossRef]

S.-H. Jeong and K. Morito, “Optical 90° hybrid with broad operating bandwidth of 94 nm,” Opt. Lett. 34(22), 3505–3507 (2009).
[CrossRef] [PubMed]

2007 (1)

C. R. Doerr, L. Zhangl, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett. 19(21), 1765–1767 (2007).
[CrossRef]

2006 (3)

1998 (1)

D. S. Levy, R. Scarmozzino, and R. M. Osgood, “Length reduction of tapered N×N MMI devices,” IEEE Photon. Technol. Lett. 10(6), 830–832 (1998).
[CrossRef]

1995 (1)

L. B. Soldano and C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

1989 (1)

D. Hoffmann, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
[CrossRef]

Buhl, L. L.

C. R. Doerr, L. Zhangl, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett. 19(21), 1765–1767 (2007).
[CrossRef]

C. R. Doerr, D. M. Gill, A. H. Gnauck, L. L. Buhl, P. J. Winzer, M. A. Cappuzzo, A. Wong-Foy, E. Y. Chen, and L. T. Gomez, “Monolithic demodulator for 40-Gb/s DQPSK using a star coupler,” J. Lightwave Technol. 24(1), 171–174 (2006).
[CrossRef]

Cappuzzo, M. A.

Chandrasekhar, S.

C. R. Doerr, L. Zhangl, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett. 19(21), 1765–1767 (2007).
[CrossRef]

Chen, E. Y.

Dietrich, E.

D. Hoffmann, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
[CrossRef]

Doerr, C. R.

C. R. Doerr, L. Zhangl, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett. 19(21), 1765–1767 (2007).
[CrossRef]

C. R. Doerr, D. M. Gill, A. H. Gnauck, L. L. Buhl, P. J. Winzer, M. A. Cappuzzo, A. Wong-Foy, E. Y. Chen, and L. T. Gomez, “Monolithic demodulator for 40-Gb/s DQPSK using a star coupler,” J. Lightwave Technol. 24(1), 171–174 (2006).
[CrossRef]

Gill, D. M.

Gnauck, A. H.

Gomez, L. T.

Heidrich, H.

D. Hoffmann, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
[CrossRef]

Hoffmann, D.

D. Hoffmann, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
[CrossRef]

Jeong, S.-H.

Kikuchi, K.

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
[CrossRef]

Langenhorst, R.

D. Hoffmann, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
[CrossRef]

Levy, D. S.

D. S. Levy, R. Scarmozzino, and R. M. Osgood, “Length reduction of tapered N×N MMI devices,” IEEE Photon. Technol. Lett. 10(6), 830–832 (1998).
[CrossRef]

Morito, K.

Osgood, R. M.

D. S. Levy, R. Scarmozzino, and R. M. Osgood, “Length reduction of tapered N×N MMI devices,” IEEE Photon. Technol. Lett. 10(6), 830–832 (1998).
[CrossRef]

Pennings, C. M.

L. B. Soldano and C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Petermann, K.

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on Silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
[CrossRef]

Scarmozzino, R.

D. S. Levy, R. Scarmozzino, and R. M. Osgood, “Length reduction of tapered N×N MMI devices,” IEEE Photon. Technol. Lett. 10(6), 830–832 (1998).
[CrossRef]

Seimetz, M.

Soldano, L. B.

L. B. Soldano and C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Voigt, K.

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on Silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
[CrossRef]

Weinert, C. M.

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on Silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
[CrossRef]

M. Seimetz and C. M. Weinert, “Options, feasibility and availability of 2×4 90° hybrids for coherent optical systems,” J. Lightwave Technol. 24(3), 1317–1322 (2006).
[CrossRef]

Wenke, G.

D. Hoffmann, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
[CrossRef]

Winzer, G.

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on Silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
[CrossRef]

Winzer, P. J.

Wong-Foy, A.

Zhangl, L.

C. R. Doerr, L. Zhangl, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett. 19(21), 1765–1767 (2007).
[CrossRef]

Zimmermann, L.

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on Silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. R. Doerr, L. Zhangl, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett. 19(21), 1765–1767 (2007).
[CrossRef]

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on Silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett. 21(3), 143–145 (2009).
[CrossRef]

D. S. Levy, R. Scarmozzino, and R. M. Osgood, “Length reduction of tapered N×N MMI devices,” IEEE Photon. Technol. Lett. 10(6), 830–832 (1998).
[CrossRef]

J. Lightwave Technol. (4)

L. B. Soldano and C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

C. R. Doerr, D. M. Gill, A. H. Gnauck, L. L. Buhl, P. J. Winzer, M. A. Cappuzzo, A. Wong-Foy, E. Y. Chen, and L. T. Gomez, “Monolithic demodulator for 40-Gb/s DQPSK using a star coupler,” J. Lightwave Technol. 24(1), 171–174 (2006).
[CrossRef]

M. Seimetz and C. M. Weinert, “Options, feasibility and availability of 2×4 90° hybrids for coherent optical systems,” J. Lightwave Technol. 24(3), 1317–1322 (2006).
[CrossRef]

D. Hoffmann, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
[CrossRef]

Opt. Lett. (1)

Other (3)

R. Kunkel, H. G. Bach, D. Hoffmann, C. M. Weinert, I. Molina-Fernandez, and R. Halir, “First monolithic InP-based 90° hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” Proc. IPRM 2009, paper TuB2.2 (2009).

H. G. Bach, A. Matiss, C. C. Leonhardt, R. Kunkel, D. Schmidt, M. Schell, and A. Umbach, “Monolithic 90° hybrid with balanced pin photodiodes for 100 Gbit/s PM-QPSK receiver applications,” Proc. OFC 2009, paper OMK5 (2009).

M. Baudreau, M. Poirier, G. Yoffe, and B. Pezeshki, “An integrated InP coherent receiver for 40 and 100 Gb/sec telecommunications systems,” Proc. OFC 2009, paper OMK6 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic diagrams of a coherent detection scheme employing the Type-I scheme (a) and the conventional 4×4 MMI coupler

Fig. 2
Fig. 2

Device length (LDevice) relation between the Type-I scheme and the 4×4 MMI coupler

Fig. 3
Fig. 3

Schematic diagram of a coherent detection scheme consisting of the proposed 90° hybrid (the Type-II scheme) and balanced PDs

Fig. 4
Fig. 4

Schematic diagram of a coherent detection scheme consisting of the proposed 90° hybrid (the Type-II scheme without using access waveguides) and balanced PDs

Fig. 5
Fig. 5

Calculated reduction ratio of LS24 (a) and calculated relative phase difference between Ch-3 and Ch-4 (Δθ34) of the linear-tapered 2×4 MMI coupler when the QPSK signal and the LO have the phase difference (ΔΦ) of −π/2 (b) as a function of WMF/WMS

Fig. 6
Fig. 6

Simulated transmission characteristics of the Type-II scheme in the absence of the access waveguides for (a) ΔΦ=0, (b) ΔΦ=π, (c) ΔΦ=–π/2, and (b) ΔΦ=+π/2. The amplitude for the LO was set to be identical to that of the signal.

Fig. 7
Fig. 7

Calculated transmission spectra of the Type-II scheme shown in Fig. 6 as a function of the phase difference between the signal and the LO (ΔΦ)

Fig. 8
Fig. 8

Calculated transmission spectra of (a) the Type-II scheme in the presence of the 50-μm-long access waveguides and (b) the Type-II scheme in the absence of the access waveguides within the C-band spectral range

Fig. 9
Fig. 9

Calculated relative phase deviation from the quadrature phase relation (Δϕ) of (a) the Type-II scheme in the presence of the 50-μm-long access waveguides and (b) the Type-II scheme in the absence of the access waveguides within the C-band spectral range

Fig. 10
Fig. 10

Device length (LDevice) relation between the Type-I scheme, the Type-II schemes and the conventional 4×4 MMI coupler

Fig. 11
Fig. 11

SEM picture of the fabricated deep etched ridge waveguide with W=2.0 μm.

Fig. 12
Fig. 12

Top-view photograph of the proposed 90° hybrid employing the Type-II scheme without using the access waveguides between the linear-tapered 2×4 MMI coupler and the 2×2 MMI coupler

Fig. 13
Fig. 13

Schematic drawing of the delayed Mach-Zehnder interferometer integrated Type-II scheme without using the access waveguides

Fig. 14
Fig. 14

Measured transmission spectra of the delayed interferometer integrated Type-II scheme. Inset shows the magnified views at around λ=1.55 μm.

Fig. 15
Fig. 15

Experimentally characterized CMRRs for the In-phase channels and the Quadrature channels of the Type-II scheme

Fig. 16
Fig. 16

Experimentally estimated relative phase deviation (Δϕ) for the Type-II scheme

Fig. 17
Fig. 17

Constellation diagrams for the Type-II scheme within the C-band spectral range. In this case, complex amplitudes were obtained from the experimental data shown in Fig. 14.

Tables (2)

Tables Icon

Table 1 Calculated WM(z), <β0−βν>, proportional constant χSQ, the optimized χSQ for satisfying the phase matching condition for the Type-II scheme employing a parabolic-tapered 2×4 MMI coupler

Tables Icon

Table 2 Calculated WM(z), <β0−βν>, proportional constant χEXP, the optimized χEXP for satisfying the phase matching condition for the Type-II scheme employing an exponential-tapered 2×4 MMI coupler

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

L π = π β 0 β 1
L π 4 N e q W eff 2 3 λ
β 0 β ν ν ( ν + 2 ) π λ 4 N e q W eff 2 = ν ( ν + 2 ) π 3 L π
Δ ρ = ( β 0 β ν ) L M M I
Δ ρ = 0 L M M I ( β 0 β ν ) d z = ν ( ν + 2 ) π λ 4 N e q 0 L M M I d z W M 2 ( z )
θ P h a s e = π 4
W M ( z ) = W M S + ( W M F W M S ) z L S 24
β 0 β ν = ν ( ν + 2 ) π λ 4 N e q W M F 2 χ S T
χ S T = W M F W M S
L π S T = L π χ S T

Metrics