Abstract

We present a theoretical study of crystalline and amorphous silicon thin-film solar cells with a periodic pattern on a sub-micron scale realized in the silicon layer and filled with silicon dioxide right below a properly designed antireflection (AR) coating. The study and optimization of the structure as a function of all the photonic lattice parameters, together with the calculation of the absorption in a single layer, allows to identify the different roles of the periodic pattern in determining an increase of the absorbance. From one side, the photonic crystal and the AR coating act as impedance matching layers, thus minimizing reflection of incident light over a particularly wide range of frequencies. Moreover a strong absorption enhancement is observed when the incident light is coupled into the quasi guided modes of the photonic slab. We found a substantial increase of the short-circuit current when the parameters are properly optimized, demonstrating the advantage of a wavelength-scale, photonic crystal based approach for patterning of thin-film silicon solar cells.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Nelson, The Physics of Solar Cells (Imperial College Press, London 2003).
  2. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando 1985).
  3. J. Poortmans and V. Arkhipov (editors), Thin Film Solar Cells (Wiley, Chichester 2006).
    [CrossRef]
  4. P. Würfel, Physics of Solar Cells (Wiley-ICH, Weinheim 2005).
    [CrossRef]
  5. C. Heine and R. Morf, "Submicrometer gratings for solar energy applications," Appl. Opt. 34, 2476 (1995).
    [CrossRef] [PubMed]
  6. M. Auslender, D. Levy, and S. Hava, "One-dimensional antireflection gratings in (100) silicon: a numerical study," Appl. Opt. 37, 369 (1998).
    [CrossRef]
  7. C. Eisele, C. E. Nebel, and M. Stutzmann, "Periodic light coupler gratings in amorphous thin film solar cells," J. Appl. Phys. 89, 7722 (2001).
    [CrossRef]
  8. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, "Silicon thin-film solar cells with rectangular shaped grating couplers," Progress in Photovoltaics: Research and Applications,  14, 13-24 (2005).
    [CrossRef]
  9. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
    [CrossRef]
  10. K. R. Catchpole and M. A. Green, "A conceptual model of light coupling by pillar diffraction gratings," J. Appl. Phys. 101, 063105 (2007).
    [CrossRef]
  11. K. R. Catchpole, "A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells," J. Appl. Phys. 102, 013102 (2007).
    [CrossRef]
  12. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, "Improving thin-film crystalline silicon solar cells efficiencies with photonic crystals," Opt. Express 15, 16986 (2007).
    [CrossRef] [PubMed]
  13. C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M Lemiti, X. Letartre, and P. Viktorovitch, "Photonic crystal assisted ultra-thin silicon photovoltaic solar cell," in Photonics for Solar Energy Systems II, A. Gombert, ed., Proc. SPIE, 7002, 700207 (2008).
    [CrossRef]
  14. Y. Lee, C. Huang, J. Chang, and M. Wu, "Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor grating," Opt. Express 16, 7969 (2008).
    [CrossRef] [PubMed]
  15. D. Zhou and R. Biswas, "Photonic crystal enhanced light-trapping in thin film solar cells," J. Appl. Phys. 103, 093102 (2008).
    [CrossRef]
  16. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, "Employing dielectric diffractive structures in solar cells-a numerical study," Phys. Stat. Sol. A 205, 2777 (2008).
    [CrossRef]
  17. A. Chutinan and S. John, "Light trapping and absorption optimization in certain thin-film photonic crystal architectures", Phys. Rev. A 78, 023825 (2008).
    [CrossRef]
  18. I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, "Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface," Appl. Phys. Lett. 94, 191102 (2009).
    [CrossRef]
  19. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, "Absorption enhancement using photonic crystals for silicon thin film solar cells," Opt. Express 17, 14312 (2009).
    [CrossRef] [PubMed]
  20. A. Chutinan, N. P. Kherani, and S. Zukotynski, "High-efficiency photonic crystal solar cell architecture," Opt. Express 17, 8871 (2009).
    [CrossRef] [PubMed]
  21. R. Dewan, and D. Knipp, "Light trapping in thin-film silicon solar cells with integrated diffraction grating," J. Appl. Phys. 106, 074901 (2009).
    [CrossRef]
  22. C. Henry, "Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells," J. App. Phys. 51, 4494-4500 (1980).
    [CrossRef]
  23. For this reason, we refer indifferently to microcrystalline or crystalline silicon, because they have the same optical properties.
  24. ASTMG 173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface, free download from http://rredc.nrel.gov/solar/spectra/am1.5.
  25. D. M. Whittaker, and I. S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610 (1999).
    [CrossRef]
  26. E. Fortunato, D. Ginley, H. Hosono, and D.C. Paine, "Transparent Conductive Oxides for Photovoltaics," MRS Bulletin 32, 242-247 (2007).
    [CrossRef]
  27. Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, and Z. Sun, "Refractive indices of textured indium tin oxide and zinc oxide thin films," Thin Solid Films 510, 95-101 (2006).
    [CrossRef]
  28. M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, "The effect of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method," J. Mater. Sci: Mater. Electron. 19, 704-708 (2008).
    [CrossRef]

2009

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, "Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface," Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, "Absorption enhancement using photonic crystals for silicon thin film solar cells," Opt. Express 17, 14312 (2009).
[CrossRef] [PubMed]

A. Chutinan, N. P. Kherani, and S. Zukotynski, "High-efficiency photonic crystal solar cell architecture," Opt. Express 17, 8871 (2009).
[CrossRef] [PubMed]

R. Dewan, and D. Knipp, "Light trapping in thin-film silicon solar cells with integrated diffraction grating," J. Appl. Phys. 106, 074901 (2009).
[CrossRef]

2008

Y. Lee, C. Huang, J. Chang, and M. Wu, "Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor grating," Opt. Express 16, 7969 (2008).
[CrossRef] [PubMed]

D. Zhou and R. Biswas, "Photonic crystal enhanced light-trapping in thin film solar cells," J. Appl. Phys. 103, 093102 (2008).
[CrossRef]

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, "Employing dielectric diffractive structures in solar cells-a numerical study," Phys. Stat. Sol. A 205, 2777 (2008).
[CrossRef]

A. Chutinan and S. John, "Light trapping and absorption optimization in certain thin-film photonic crystal architectures", Phys. Rev. A 78, 023825 (2008).
[CrossRef]

M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, "The effect of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method," J. Mater. Sci: Mater. Electron. 19, 704-708 (2008).
[CrossRef]

2007

E. Fortunato, D. Ginley, H. Hosono, and D.C. Paine, "Transparent Conductive Oxides for Photovoltaics," MRS Bulletin 32, 242-247 (2007).
[CrossRef]

K. R. Catchpole and M. A. Green, "A conceptual model of light coupling by pillar diffraction gratings," J. Appl. Phys. 101, 063105 (2007).
[CrossRef]

K. R. Catchpole, "A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells," J. Appl. Phys. 102, 013102 (2007).
[CrossRef]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, "Improving thin-film crystalline silicon solar cells efficiencies with photonic crystals," Opt. Express 15, 16986 (2007).
[CrossRef] [PubMed]

2006

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, and Z. Sun, "Refractive indices of textured indium tin oxide and zinc oxide thin films," Thin Solid Films 510, 95-101 (2006).
[CrossRef]

2005

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, "Silicon thin-film solar cells with rectangular shaped grating couplers," Progress in Photovoltaics: Research and Applications,  14, 13-24 (2005).
[CrossRef]

2001

C. Eisele, C. E. Nebel, and M. Stutzmann, "Periodic light coupler gratings in amorphous thin film solar cells," J. Appl. Phys. 89, 7722 (2001).
[CrossRef]

1999

D. M. Whittaker, and I. S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610 (1999).
[CrossRef]

1998

1995

1980

C. Henry, "Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells," J. App. Phys. 51, 4494-4500 (1980).
[CrossRef]

Alamariu, B. A.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Algora, C.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, "Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface," Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

Auslender, M.

Bermel, P.

Biswas, R.

D. Zhou and R. Biswas, "Photonic crystal enhanced light-trapping in thin film solar cells," J. Appl. Phys. 103, 093102 (2008).
[CrossRef]

Caglar, M.

M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, "The effect of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method," J. Mater. Sci: Mater. Electron. 19, 704-708 (2008).
[CrossRef]

Caglar, Y.

M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, "The effect of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method," J. Mater. Sci: Mater. Electron. 19, 704-708 (2008).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole, "A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells," J. Appl. Phys. 102, 013102 (2007).
[CrossRef]

K. R. Catchpole and M. A. Green, "A conceptual model of light coupling by pillar diffraction gratings," J. Appl. Phys. 101, 063105 (2007).
[CrossRef]

Chang, J.

Chen, B.J.

Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, and Z. Sun, "Refractive indices of textured indium tin oxide and zinc oxide thin films," Thin Solid Films 510, 95-101 (2006).
[CrossRef]

Chen, T.P.

Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, and Z. Sun, "Refractive indices of textured indium tin oxide and zinc oxide thin films," Thin Solid Films 510, 95-101 (2006).
[CrossRef]

Chutinan, A.

A. Chutinan, N. P. Kherani, and S. Zukotynski, "High-efficiency photonic crystal solar cell architecture," Opt. Express 17, 8871 (2009).
[CrossRef] [PubMed]

A. Chutinan and S. John, "Light trapping and absorption optimization in certain thin-film photonic crystal architectures", Phys. Rev. A 78, 023825 (2008).
[CrossRef]

Culshaw, I. S.

D. M. Whittaker, and I. S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610 (1999).
[CrossRef]

Dewan, R.

R. Dewan, and D. Knipp, "Light trapping in thin-film silicon solar cells with integrated diffraction grating," J. Appl. Phys. 106, 074901 (2009).
[CrossRef]

Drouard, E.

Duan, X.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Eisele, C.

C. Eisele, C. E. Nebel, and M. Stutzmann, "Periodic light coupler gratings in amorphous thin film solar cells," J. Appl. Phys. 89, 7722 (2001).
[CrossRef]

El Daif, O.

Fahr, S.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, "Employing dielectric diffractive structures in solar cells-a numerical study," Phys. Stat. Sol. A 205, 2777 (2008).
[CrossRef]

Fave, A.

Feng, N.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Fortunato, E.

E. Fortunato, D. Ginley, H. Hosono, and D.C. Paine, "Transparent Conductive Oxides for Photovoltaics," MRS Bulletin 32, 242-247 (2007).
[CrossRef]

Galiana, B.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, "Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface," Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

Ginley, D.

E. Fortunato, D. Ginley, H. Hosono, and D.C. Paine, "Transparent Conductive Oxides for Photovoltaics," MRS Bulletin 32, 242-247 (2007).
[CrossRef]

Green, M. A.

K. R. Catchpole and M. A. Green, "A conceptual model of light coupling by pillar diffraction gratings," J. Appl. Phys. 101, 063105 (2007).
[CrossRef]

Haase, C.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, "Silicon thin-film solar cells with rectangular shaped grating couplers," Progress in Photovoltaics: Research and Applications,  14, 13-24 (2005).
[CrossRef]

Hava, S.

Heine, C.

Helgert, C.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, "Employing dielectric diffractive structures in solar cells-a numerical study," Phys. Stat. Sol. A 205, 2777 (2008).
[CrossRef]

Henry, C.

C. Henry, "Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells," J. App. Phys. 51, 4494-4500 (1980).
[CrossRef]

Hong, C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Hosono, H.

E. Fortunato, D. Ginley, H. Hosono, and D.C. Paine, "Transparent Conductive Oxides for Photovoltaics," MRS Bulletin 32, 242-247 (2007).
[CrossRef]

Huang, C.

Ilican, S.

M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, "The effect of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method," J. Mater. Sci: Mater. Electron. 19, 704-708 (2008).
[CrossRef]

Joannopoulos, J. D.

John, S.

A. Chutinan and S. John, "Light trapping and absorption optimization in certain thin-film photonic crystal architectures", Phys. Rev. A 78, 023825 (2008).
[CrossRef]

Kaminski, A.

Kherani, N. P.

Kimerling, L. C.

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, "Improving thin-film crystalline silicon solar cells efficiencies with photonic crystals," Opt. Express 15, 16986 (2007).
[CrossRef] [PubMed]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Knipp, D.

R. Dewan, and D. Knipp, "Light trapping in thin-film silicon solar cells with integrated diffraction grating," J. Appl. Phys. 106, 074901 (2009).
[CrossRef]

Kroll, M.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, "Employing dielectric diffractive structures in solar cells-a numerical study," Phys. Stat. Sol. A 205, 2777 (2008).
[CrossRef]

Lederer, F.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, "Employing dielectric diffractive structures in solar cells-a numerical study," Phys. Stat. Sol. A 205, 2777 (2008).
[CrossRef]

Lee, Y.

Lemiti, M.

Letartre, X.

Levy, D.

Liu, J.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Luo, C.

Martinez, L. J.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, "Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface," Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

Morf, R.

Müller, J.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, "Silicon thin-film solar cells with rectangular shaped grating couplers," Progress in Photovoltaics: Research and Applications,  14, 13-24 (2005).
[CrossRef]

Nebel, C. E.

C. Eisele, C. E. Nebel, and M. Stutzmann, "Periodic light coupler gratings in amorphous thin film solar cells," J. Appl. Phys. 89, 7722 (2001).
[CrossRef]

Paine, D.C.

E. Fortunato, D. Ginley, H. Hosono, and D.C. Paine, "Transparent Conductive Oxides for Photovoltaics," MRS Bulletin 32, 242-247 (2007).
[CrossRef]

Park, Y.

Pertsch, T.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, "Employing dielectric diffractive structures in solar cells-a numerical study," Phys. Stat. Sol. A 205, 2777 (2008).
[CrossRef]

Postigo, P. A.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, "Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface," Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

Prieto, I.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, "Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface," Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

Rey-Stolle, I.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, "Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface," Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

Rockstuhl, C.

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, "Employing dielectric diffractive structures in solar cells-a numerical study," Phys. Stat. Sol. A 205, 2777 (2008).
[CrossRef]

Seassal, C.

Senoussaoui, N.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, "Silicon thin-film solar cells with rectangular shaped grating couplers," Progress in Photovoltaics: Research and Applications,  14, 13-24 (2005).
[CrossRef]

Stiebig, H.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, "Silicon thin-film solar cells with rectangular shaped grating couplers," Progress in Photovoltaics: Research and Applications,  14, 13-24 (2005).
[CrossRef]

Stutzmann, M.

C. Eisele, C. E. Nebel, and M. Stutzmann, "Periodic light coupler gratings in amorphous thin film solar cells," J. Appl. Phys. 89, 7722 (2001).
[CrossRef]

Sun, C.Q.

Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, and Z. Sun, "Refractive indices of textured indium tin oxide and zinc oxide thin films," Thin Solid Films 510, 95-101 (2006).
[CrossRef]

Sun, X.W.

Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, and Z. Sun, "Refractive indices of textured indium tin oxide and zinc oxide thin films," Thin Solid Films 510, 95-101 (2006).
[CrossRef]

Sun, Z.

Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, and Z. Sun, "Refractive indices of textured indium tin oxide and zinc oxide thin films," Thin Solid Films 510, 95-101 (2006).
[CrossRef]

Tay, B.K.

Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, and Z. Sun, "Refractive indices of textured indium tin oxide and zinc oxide thin films," Thin Solid Films 510, 95-101 (2006).
[CrossRef]

Viktorovitch, P.

Whittaker, D. M.

D. M. Whittaker, and I. S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610 (1999).
[CrossRef]

Wu, M.

Xu, C.X.

Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, and Z. Sun, "Refractive indices of textured indium tin oxide and zinc oxide thin films," Thin Solid Films 510, 95-101 (2006).
[CrossRef]

Yakuphanoglou, F.

M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, "The effect of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method," J. Mater. Sci: Mater. Electron. 19, 704-708 (2008).
[CrossRef]

Yang, Y.

Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, and Z. Sun, "Refractive indices of textured indium tin oxide and zinc oxide thin films," Thin Solid Films 510, 95-101 (2006).
[CrossRef]

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Zahren, C.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, "Silicon thin-film solar cells with rectangular shaped grating couplers," Progress in Photovoltaics: Research and Applications,  14, 13-24 (2005).
[CrossRef]

Zeng, L.

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, "Improving thin-film crystalline silicon solar cells efficiencies with photonic crystals," Opt. Express 15, 16986 (2007).
[CrossRef] [PubMed]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Zhou, D.

D. Zhou and R. Biswas, "Photonic crystal enhanced light-trapping in thin film solar cells," J. Appl. Phys. 103, 093102 (2008).
[CrossRef]

Zukotynski, S.

Appl. Opt.

Appl. Phys. Lett.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, "Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface," Appl. Phys. Lett. 94, 191102 (2009).
[CrossRef]

J. App. Phys.

C. Henry, "Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells," J. App. Phys. 51, 4494-4500 (1980).
[CrossRef]

J. Appl. Phys.

R. Dewan, and D. Knipp, "Light trapping in thin-film silicon solar cells with integrated diffraction grating," J. Appl. Phys. 106, 074901 (2009).
[CrossRef]

K. R. Catchpole and M. A. Green, "A conceptual model of light coupling by pillar diffraction gratings," J. Appl. Phys. 101, 063105 (2007).
[CrossRef]

K. R. Catchpole, "A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells," J. Appl. Phys. 102, 013102 (2007).
[CrossRef]

D. Zhou and R. Biswas, "Photonic crystal enhanced light-trapping in thin film solar cells," J. Appl. Phys. 103, 093102 (2008).
[CrossRef]

C. Eisele, C. E. Nebel, and M. Stutzmann, "Periodic light coupler gratings in amorphous thin film solar cells," J. Appl. Phys. 89, 7722 (2001).
[CrossRef]

J. Mater. Sci: Mater. Electron.

M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, "The effect of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method," J. Mater. Sci: Mater. Electron. 19, 704-708 (2008).
[CrossRef]

MRS Bulletin

E. Fortunato, D. Ginley, H. Hosono, and D.C. Paine, "Transparent Conductive Oxides for Photovoltaics," MRS Bulletin 32, 242-247 (2007).
[CrossRef]

Opt. Express

Phys. Rev. A

A. Chutinan and S. John, "Light trapping and absorption optimization in certain thin-film photonic crystal architectures", Phys. Rev. A 78, 023825 (2008).
[CrossRef]

Phys. Rev. B

D. M. Whittaker, and I. S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610 (1999).
[CrossRef]

Phys. Stat. Sol. A

M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, "Employing dielectric diffractive structures in solar cells-a numerical study," Phys. Stat. Sol. A 205, 2777 (2008).
[CrossRef]

Progress in Photovoltaics: Research and Applications

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, "Silicon thin-film solar cells with rectangular shaped grating couplers," Progress in Photovoltaics: Research and Applications,  14, 13-24 (2005).
[CrossRef]

Thin Solid Films

Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, and Z. Sun, "Refractive indices of textured indium tin oxide and zinc oxide thin films," Thin Solid Films 510, 95-101 (2006).
[CrossRef]

Other

For this reason, we refer indifferently to microcrystalline or crystalline silicon, because they have the same optical properties.

ASTMG 173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface, free download from http://rredc.nrel.gov/solar/spectra/am1.5.

J. Nelson, The Physics of Solar Cells (Imperial College Press, London 2003).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando 1985).

J. Poortmans and V. Arkhipov (editors), Thin Film Solar Cells (Wiley, Chichester 2006).
[CrossRef]

P. Würfel, Physics of Solar Cells (Wiley-ICH, Weinheim 2005).
[CrossRef]

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M Lemiti, X. Letartre, and P. Viktorovitch, "Photonic crystal assisted ultra-thin silicon photovoltaic solar cell," in Photonics for Solar Energy Systems II, A. Gombert, ed., Proc. SPIE, 7002, 700207 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Structure layout and (b) integration surface for the calculation of absorption in a single layer.

Fig. 2.
Fig. 2.

(a) Short-circuit current dependence on the etching depth h and the silicon fill factor f. The absorbing layer is c-Si with a thickness d = 500 nm, the lattice parameter is a = 450 nm and there is no AR coating. (b) Short-circuit current dependence on the refractive index n of the AR coating and on the silicon fill factor f. The parameters d and a are the same as in (a), the etching depth is fixed at 80 nm and the AR coating thickness is l = 70 nm.

Fig. 3.
Fig. 3.

(a) Spectral contribution to the short-circuit current as a function of the incident photon energy for several c-Si structures. Light is unpolarized and at normal incidence. The thickness of the silicon layer is always 500 nm. The structures are: (1) unpatterned without AR coating; (2) unpatterned with AR coating; (3) shallowly patterned with AR coating; (4) deeply patterned with AR coating (see also Table 1). For the readability of the figure, the curves are smoothed by means of a convolution with a Gaussian having standard deviation σ = 0.075 eV. The red dashed line refers to the ideal absorber. (b) and (c) Absorbance spectra for structures (3) and (4), respectively. Light is at normal incidence and the electric field is polarized parallel to the stripes; the spectra are not smoothed.

Fig. 4.
Fig. 4.

(a) Short-circuit current dependence on the etching depth h and the silicon fill factor f. The absorbing layer is a-Si with a thickness d = 300 nm; there is no AR coating. (b) Short-circuit current dependence on the refractive index n of the AR coating and on the silicon fill factor f. The absorbing layer is the same as in (a), the etching depth is fixed at 100 nm and the AR coating thickness is l = 80 nm.

Fig. 5.
Fig. 5.

(a) Spectral contribution to the short-circuit current as a function of the incident photon energy for several a-Si structures. Light is unpolarized and at normal incidence. The thickness of the silicon layer is always 300 nm. The structures are: (1) unpatterned without AR coating; (2) unpatterned with AR coating; (3) shallowly patterned with AR coating; (4) deeply patterned with AR coating (see also Table 2). For better readability of the figure, the curves are smoothed by means of a convolution with a Gaussian having standard deviation σ = 0.05 eV. The red dashed line refers to the ideal absorber. (b) and (c) Absorbance spectra for structures (3) and (4), respectively. Light is at normal incidence and the electric field is polarized parallel to the stripes; the spectra are not smoothed.

Fig. 6.
Fig. 6.

Fraction of energy absorbed in the patterned layer of thickness h for TE polarization, calculated for two different c-Si structures.

Fig. 7.
Fig. 7.

Electric field intensities for the deeply etched c-Si structure of Fig.6 (h = 300 nm) for TE polarization, calculated for the following energies: (a) E = 1.287 eV, (b) E = 1.385 eV, (c) E = 1.600 eV, (d) E = 1.726 eV, (e) E = 1.910 eV, and (f) E = 2.090 eV.

Fig. 8.
Fig. 8.

Correlation between silicon fill factor f and AR coating refractive index n: comparison of numerical data (colour map: dependence jsc(f,n); dash line: steepest descent curve starting from the best uncoated configuration) and effective-index analytical result (dash-dot line). (a) refers to c-Si, (b) refers to a-Si [see also Figs. 2 (b) and 4 (b)].

Tables (2)

Tables Icon

Table 1. Short-circuit currents values for several c-Si structures (bold face, expressed in mA/cm2). The percentages show the variation with respect to the unpatterned structure with AR coating; all the calculations have been carried out on the range [1.12, 3.5] eV. The numbers in parentheses refer to the convention used in Fig. 3.

Tables Icon

Table 2. Short-circuit currents for several a-Si structures (expressed in mA/cm2). The percentages show the variation with respect to the unpatterned structure with AR coating; all the calculations have been carried out on the range [1.25, 3.5] eV. The numbers in parentheses refer to the convention used in Fig. 5.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

j sc = e 0 A ( E ) d d E d E 0 d j sc d E d E .
E ( R , z ) = n = 1 NPW E ˜ ( G n , z ) e i ( k + G n ) · R
e ( z ) = [ E ˜ y ( G 1 , z ) E ˜ y ( G NPW , z ) , E ˜ x ( G 1 , z ) E ˜ x ( G NPW , z ) ]
h ( z ) = [ H ˜ x ( G 1 , z ) H ˜ x ( G NPW , z ) , H ˜ y ( G 1 , z ) H ˜ y ( G NPW , z ) ] .
A l = Re [ e ( z l 1 ) · h * ( z l 1 ) e ( z l ) · h * ( z l ) ] Re [ e 0 · h 0 * ] .
ε eff ( f ) = 1 2 [ f ε Si + ( 1 f ) ε SiO 2 + 1 f / ε Si + ( 1 f ) / ε SiO 2 ] .
n ( f ) = [ n eff ( f ) ] 1 2 = [ ε eff ( f ) ] 1 4 .

Metrics