Abstract

We demonstrate all-optical time division demultiplexing from 160Gb/s to 10Gb/s in the C-band, based on four-wave mixing (FWM) in a silicon nanowire. We achieve error-free operation with a system penalty of ~3.9dB at 10−9 BER.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Nature Photonics Workshop on the Future of Optical Communications; Tokyo, Japan, Oct. 2007. www.nature.com/nphoton/supplements/techconference2007
  2. B. Metcalfe, Toward Terabit Ethernet Plenary Talk, Optical Fiber Communications 2008, see www.ofcnfoec.org/conference_program/Plenary-video.aspx and www.lightreading.com/tv/tv_popup.asp?doc_id=146223
  3. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
    [CrossRef] [PubMed]
  4. B. J. Eggleton, D. J. Moss, and S. Radic, Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools Ch. 20 (Academic Press, Oxford, 2008).
  5. V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006).
    [CrossRef] [PubMed]
  6. M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: Beyond Noise Compression to BER Reduction,” IEEE J. Sel. Top. Quant. Electron. Special Issue on All-Optical Signal Processing 12, 736 (2006).
  7. M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
    [CrossRef]
  8. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  9. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
    [CrossRef]
  10. M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
    [CrossRef] [PubMed]
  11. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, B. J. Eggleton, and ., “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
    [CrossRef]
  12. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008).
    [CrossRef] [PubMed]
  13. B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” Photon. Technol. Lett. 21(3), 182–184 (2009).
    [CrossRef]
  14. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon chip,” Nature 441(7096), 04932 (2006).
    [CrossRef]
  15. F. A. M. Melloni, A. Canciamilla, C. Ferrari, M. Torregiani, “Phase preserving wavelength conversion over 6 Thz in a silicon coupled resonator optical waveguide”, Optical Fiber Communications (OFC) Postdeadline Paper PDPA6, San Diego, March (2009).
  16. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [CrossRef]
  17. B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
    [CrossRef]
  18. B. Jalali, D. R. Solli, and S. Gupta, “Silicon's time lens,” Nat. Photonics 3(1), 8–10 (2009).
    [CrossRef]
  19. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 7218 (2008).
    [CrossRef]
  20. M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
    [CrossRef]
  21. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” Photon. Tech. Lett. 18(23), 2520–2522 (2006).
    [CrossRef]

2009 (4)

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, B. J. Eggleton, and ., “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

B. Jalali, D. R. Solli, and S. Gupta, “Silicon's time lens,” Nat. Photonics 3(1), 8–10 (2009).
[CrossRef]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

2008 (7)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008).
[CrossRef] [PubMed]

A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 7218 (2008).
[CrossRef]

2007 (2)

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

2006 (4)

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: Beyond Noise Compression to BER Reduction,” IEEE J. Sel. Top. Quant. Electron. Special Issue on All-Optical Signal Processing 12, 736 (2006).

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon chip,” Nature 441(7096), 04932 (2006).
[CrossRef]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” Photon. Tech. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006).
[CrossRef] [PubMed]

Aggarwal, I. D.

Bergman, K.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Biberman, A.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, B. J. Eggleton, and ., “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Cheben, P.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” Photon. Tech. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Chen, X. G.

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Choi, D. Y.

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

Choi, D.-Y.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, B. J. Eggleton, and ., “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

Chou, C.-Y.

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Choy, D.

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

Clausen, A. T.

Dadap, J. I.

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Delage, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” Photon. Tech. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Densmore, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” Photon. Tech. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Eggleton, B. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, B. J. Eggleton, and ., “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: Beyond Noise Compression to BER Reduction,” IEEE J. Sel. Top. Quant. Electron. Special Issue on All-Optical Signal Processing 12, 736 (2006).

V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006).
[CrossRef] [PubMed]

Foster, A.

A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 7218 (2008).
[CrossRef]

Foster, M. A.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon chip,” Nature 441(7096), 04932 (2006).
[CrossRef]

Fu, L.

Fu, L. B.

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: Beyond Noise Compression to BER Reduction,” IEEE J. Sel. Top. Quant. Electron. Special Issue on All-Optical Signal Processing 12, 736 (2006).

Gaeta, A. L.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 7218 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon chip,” Nature 441(7096), 04932 (2006).
[CrossRef]

Galili, M.

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 7218 (2008).
[CrossRef]

Green, W. M. J.

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Gupta, S.

B. Jalali, D. R. Solli, and S. Gupta, “Silicon's time lens,” Nat. Photonics 3(1), 8–10 (2009).
[CrossRef]

Hsieh, I.-W.

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Jalali, B.

B. Jalali, D. R. Solli, and S. Gupta, “Silicon's time lens,” Nat. Photonics 3(1), 8–10 (2009).
[CrossRef]

Janz, S.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” Photon. Tech. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Jeppesen, P.

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, B. J. Eggleton, and ., “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

Lamontagne, B.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” Photon. Tech. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Lapointe, J.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” Photon. Tech. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Lee, B. G.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Lipson, M.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 7218 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon chip,” Nature 441(7096), 04932 (2006).
[CrossRef]

Littler, I. C.

Littler, I. C. M.

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: Beyond Noise Compression to BER Reduction,” IEEE J. Sel. Top. Quant. Electron. Special Issue on All-Optical Signal Processing 12, 736 (2006).

Liu, X.

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Luan, F.

Luther-Davies, B.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, B. J. Eggleton, and ., “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

Luther-Davis, B.

Madden, S.

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

Madden, S. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, B. J. Eggleton, and ., “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Magi, E.

Mägi, E. C.

Mathlouthi, W.

Moss, D. J.

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: Beyond Noise Compression to BER Reduction,” IEEE J. Sel. Top. Quant. Electron. Special Issue on All-Optical Signal Processing 12, 736 (2006).

V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006).
[CrossRef] [PubMed]

Mulvad, H. C.

Osgood, R. M.

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Oxenløwe, L. K.

Paniccia, M.

Pelusi, M.

Pelusi, M. D.

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

Post, E.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” Photon. Tech. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Rochette, M.

V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006).
[CrossRef] [PubMed]

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: Beyond Noise Compression to BER Reduction,” IEEE J. Sel. Top. Quant. Electron. Special Issue on All-Optical Signal Processing 12, 736 (2006).

Rode, A.

Roelens, M. A. F.

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

Rong, H.

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 7218 (2008).
[CrossRef]

Sanghera, J. S.

Schmid, J. H.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” Photon. Tech. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon chip,” Nature 441(7096), 04932 (2006).
[CrossRef]

Sekaric, L.

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon chip,” Nature 441(7096), 04932 (2006).
[CrossRef]

Shaw, L. B.

Solli, D. R.

B. Jalali, D. R. Solli, and S. Gupta, “Silicon's time lens,” Nat. Photonics 3(1), 8–10 (2009).
[CrossRef]

Ta’eed, V. G.

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: Beyond Noise Compression to BER Reduction,” IEEE J. Sel. Top. Quant. Electron. Special Issue on All-Optical Signal Processing 12, 736 (2006).

V. G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I. C. Littler, D. J. Moss, and B. J. Eggleton, “Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber,” Opt. Express 14(22), 10371–10376 (2006).
[CrossRef] [PubMed]

Ta'eed, V. G.

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon chip,” Nature 441(7096), 04932 (2006).
[CrossRef]

Turner-Foster, A. C.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 7218 (2008).
[CrossRef]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Vlasov, Y. A.

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Vo, T. D.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, B. J. Eggleton, and ., “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Waldron, P.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” Photon. Tech. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Xia, F.

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Xu, D.-X.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” Photon. Tech. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Xu, J.

Yeom, D. I.

Electron. Lett. (1)

M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron. Special Issue on All-Optical Signal Processing (1)

M. Rochette, L. B. Fu, V. G. Ta’eed, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, “2R Optical Regeneration: Beyond Noise Compression to BER Reduction,” IEEE J. Sel. Top. Quant. Electron. Special Issue on All-Optical Signal Processing 12, 736 (2006).

IEEE Photon. Technol. Lett. (2)

B. G. Lee, X. G. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

Nat. Photonics (4)

B. Jalali, D. R. Solli, and S. Gupta, “Silicon's time lens,” Nat. Photonics 3(1), 8–10 (2009).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, B. J. Eggleton, and ., “Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Nature (2)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon chip,” Nature 441(7096), 04932 (2006).
[CrossRef]

A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456, 7218 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Photon. Tech. Lett. (1)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” Photon. Tech. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Photon. Technol. Lett. (1)

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Other (4)

Nature Photonics Workshop on the Future of Optical Communications; Tokyo, Japan, Oct. 2007. www.nature.com/nphoton/supplements/techconference2007

B. Metcalfe, Toward Terabit Ethernet Plenary Talk, Optical Fiber Communications 2008, see www.ofcnfoec.org/conference_program/Plenary-video.aspx and www.lightreading.com/tv/tv_popup.asp?doc_id=146223

B. J. Eggleton, D. J. Moss, and S. Radic, Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools Ch. 20 (Academic Press, Oxford, 2008).

F. A. M. Melloni, A. Canciamilla, C. Ferrari, M. Torregiani, “Phase preserving wavelength conversion over 6 Thz in a silicon coupled resonator optical waveguide”, Optical Fiber Communications (OFC) Postdeadline Paper PDPA6, San Diego, March (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of optical time-division demultiplexing based on four-wave mixing (FWM).

Fig. 2
Fig. 2

Experimental setup for demultiplexing from 160Gb/s to 10Gb/s (33% RZ).Note the SU8 over-cladding layer for the nanowire is not shown.

Fig. 3
Fig. 3

Output spectrum measured on an OSA,collected at the DROP port.

Fig. 4
Fig. 4

Eye diagrams corresponding to (a) the 160Gb/s input signal at λ = 1565 nm, (b) 10Gb/s pump beam at λ = 1546nm and (c) 10Gb/s output at λ = 1528nm.

Fig. 5
Fig. 5

BER measurement for the signal (blue line) and idler (black line) generated by a 4mW signal and a 11mW pump: the power penalty of the two curves is 3.9dB

Metrics