Abstract

Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. O'Regan and M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature 353(6346), 737–740 (1991).
    [CrossRef]
  2. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” JACS 127(48), 16835–16847 (2005).
    [CrossRef]
  3. B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nat. Photonics 3(7), 406–411 (2009).
    [CrossRef]
  4. P. R. F. Barnes, A. Y. Anderson, S. E. Koops, J. R. Durrant, and B. C. O'Regan, “Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements,” J. Phys. Chem. C 113(3), 1126–1136 (2009).
    [CrossRef]
  5. A. Blumen, J. Klafter, and G. Zumofen, “Influence of restricted geometries on the direct energy transfer,” J. Chem. Phys. 84(3), 1397–1401 (1986).
    [CrossRef]
  6. B. K.-K. Fung and L. Stryer, “Surface density determination in membranes by fluorescence energy transfer,” Biochemistry 17(24), 5241–5248 (1978).
    [CrossRef] [PubMed]
  7. J. M. Drake, J. Klafter, and P. Levitz, “Chemical and biological microstructures as probed by dynamic processes,” Science 251(5001), 1574–1579 (1991).
    [CrossRef] [PubMed]
  8. G. Calzaferri and K. Lutkouskaya, “Mimicking the antenna system of green plants,” Photochem. Photobiol. Sci. 7(8), 879–910 (2008).
    [CrossRef] [PubMed]
  9. C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem. 77(1), 51–76 (2008).
    [CrossRef] [PubMed]
  10. B. Schuler and W. A. Eaton, “Protein folding studied by single-molecule FRET,” Curr. Opin. Struct. Biol. 18(1), 16–26 (2008).
    [CrossRef] [PubMed]
  11. J. P. S. Farinha and J. M. G. Martinho, “Resonance Energy Transfer in Polymer Nanodomains,” J. Phys. Chem. C 112(29), 10591–10601 (2008).
    [CrossRef]
  12. Y. X. Liu, M. A. Summers, C. Edder, J. M. J. Fréchet, and M. D. McGehee, “Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells,” Adv. Mater. 17(24), 2960–2964 (2005).
    [CrossRef]
  13. R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007).
    [CrossRef]
  14. T. Förster, “Zwischenmolekulare Energiewnderung und Fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
    [CrossRef]
  15. I. Z. Steinberg and E. Katchalski, “Theoretical Analysis of the Role of Diffusion in Chemical Reactions, Fluorescence Quenching, and Nonradiative Energy Transfer,” J. Chem. Phys. 48(6), 2404–2410 (1968).
    [CrossRef]
  16. D. D. Thomas, W. F. Carlsen, and L. Stryer, “Fluorescence energy transfer in the rapid-diffusion limit,” Proc. Natl. Acad. Sci. U.S.A. 75(12), 5746–5750 (1978).
    [CrossRef] [PubMed]
  17. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
  18. J. Baumann and M. D. Fayer, “Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: Effects of spatial geometry on time-resolved observables,” J. Chem. Phys. 85(7), 4087–4107 (1986).
    [CrossRef]
  19. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 164(1-3), 3–14 (2004).
    [CrossRef]
  20. Y. R. Khan, T. E. Dykstra, and G. D. Scholes, “Exploring the Förster limit in a small FRET pair,” Chem. Phys. Lett. 461(4-6), 305–309 (2008).
    [CrossRef]
  21. J. Najbar and M. Mac, “Mechanisms of fluorescence quenching of aromatic molecules by potassium iodide and potassium bromide in methanol–ethanol solutions,” J. Chem. Soc., Faraday Trans. 87(10), 1523–1529 (1991).
    [CrossRef]
  22. T. Förster, “Experimentelle und theoretische Untersuchung des zwischenmolekularen Ubergangs von Elektronenanregungsenergie,” Z. Naturforsch. B 4a, 321 (1949).
  23. D. Parker, “Luminescent lanthanide sensors for pH, pO2 and selected anions,” Coord. Chem. Rev. 205(1), 109–130 (2000).
    [CrossRef]
  24. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
    [CrossRef]
  25. L. M. Peter, “Dye-sensitized nanocrystalline solar cells,” Phys. Chem. Chem. Phys. 9(21), 2630–2642 (2007).
    [CrossRef] [PubMed]
  26. N. Sabbatini, M. Guardigli, J.-M. Lehn, and G. Mathis, “Luminescence of lanthanide cryptates: effects of phosphate and iodide anions,” J. Alloy. Comp. 180(1-2), 363–367 (1992).
    [CrossRef]
  27. Y. Elkana, J. Feitelson, and E. Katchalski, “Effect of Diffusion on Transfer of Electronic Excitation Energy,” J. Chem. Phys. 48(6), 2399–2404 (1968).
    [CrossRef]
  28. J.-C. G. Bünzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev. 34(12), 1048–1077 (2005).
    [CrossRef] [PubMed]
  29. J. H. Yum, B. E. Hardin, S. J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel, and M. K. Nazeeruddin, “Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes,” Angew. Chem. Int. Ed. 48(49), 9277–9280 (2009).
    [CrossRef]
  30. I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Adv. Funct. Mater. 19(15), 2431–2436 (2009).
    [CrossRef]

2009

B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nat. Photonics 3(7), 406–411 (2009).
[CrossRef]

P. R. F. Barnes, A. Y. Anderson, S. E. Koops, J. R. Durrant, and B. C. O'Regan, “Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements,” J. Phys. Chem. C 113(3), 1126–1136 (2009).
[CrossRef]

J. H. Yum, B. E. Hardin, S. J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel, and M. K. Nazeeruddin, “Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes,” Angew. Chem. Int. Ed. 48(49), 9277–9280 (2009).
[CrossRef]

I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Adv. Funct. Mater. 19(15), 2431–2436 (2009).
[CrossRef]

2008

Y. R. Khan, T. E. Dykstra, and G. D. Scholes, “Exploring the Förster limit in a small FRET pair,” Chem. Phys. Lett. 461(4-6), 305–309 (2008).
[CrossRef]

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

G. Calzaferri and K. Lutkouskaya, “Mimicking the antenna system of green plants,” Photochem. Photobiol. Sci. 7(8), 879–910 (2008).
[CrossRef] [PubMed]

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem. 77(1), 51–76 (2008).
[CrossRef] [PubMed]

B. Schuler and W. A. Eaton, “Protein folding studied by single-molecule FRET,” Curr. Opin. Struct. Biol. 18(1), 16–26 (2008).
[CrossRef] [PubMed]

J. P. S. Farinha and J. M. G. Martinho, “Resonance Energy Transfer in Polymer Nanodomains,” J. Phys. Chem. C 112(29), 10591–10601 (2008).
[CrossRef]

2007

R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007).
[CrossRef]

L. M. Peter, “Dye-sensitized nanocrystalline solar cells,” Phys. Chem. Chem. Phys. 9(21), 2630–2642 (2007).
[CrossRef] [PubMed]

2005

J.-C. G. Bünzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev. 34(12), 1048–1077 (2005).
[CrossRef] [PubMed]

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” JACS 127(48), 16835–16847 (2005).
[CrossRef]

Y. X. Liu, M. A. Summers, C. Edder, J. M. J. Fréchet, and M. D. McGehee, “Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells,” Adv. Mater. 17(24), 2960–2964 (2005).
[CrossRef]

2004

M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 164(1-3), 3–14 (2004).
[CrossRef]

2000

D. Parker, “Luminescent lanthanide sensors for pH, pO2 and selected anions,” Coord. Chem. Rev. 205(1), 109–130 (2000).
[CrossRef]

1992

N. Sabbatini, M. Guardigli, J.-M. Lehn, and G. Mathis, “Luminescence of lanthanide cryptates: effects of phosphate and iodide anions,” J. Alloy. Comp. 180(1-2), 363–367 (1992).
[CrossRef]

1991

J. Najbar and M. Mac, “Mechanisms of fluorescence quenching of aromatic molecules by potassium iodide and potassium bromide in methanol–ethanol solutions,” J. Chem. Soc., Faraday Trans. 87(10), 1523–1529 (1991).
[CrossRef]

B. O'Regan and M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

J. M. Drake, J. Klafter, and P. Levitz, “Chemical and biological microstructures as probed by dynamic processes,” Science 251(5001), 1574–1579 (1991).
[CrossRef] [PubMed]

1986

J. Baumann and M. D. Fayer, “Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: Effects of spatial geometry on time-resolved observables,” J. Chem. Phys. 85(7), 4087–4107 (1986).
[CrossRef]

A. Blumen, J. Klafter, and G. Zumofen, “Influence of restricted geometries on the direct energy transfer,” J. Chem. Phys. 84(3), 1397–1401 (1986).
[CrossRef]

1978

B. K.-K. Fung and L. Stryer, “Surface density determination in membranes by fluorescence energy transfer,” Biochemistry 17(24), 5241–5248 (1978).
[CrossRef] [PubMed]

D. D. Thomas, W. F. Carlsen, and L. Stryer, “Fluorescence energy transfer in the rapid-diffusion limit,” Proc. Natl. Acad. Sci. U.S.A. 75(12), 5746–5750 (1978).
[CrossRef] [PubMed]

1968

I. Z. Steinberg and E. Katchalski, “Theoretical Analysis of the Role of Diffusion in Chemical Reactions, Fluorescence Quenching, and Nonradiative Energy Transfer,” J. Chem. Phys. 48(6), 2404–2410 (1968).
[CrossRef]

Y. Elkana, J. Feitelson, and E. Katchalski, “Effect of Diffusion on Transfer of Electronic Excitation Energy,” J. Chem. Phys. 48(6), 2399–2404 (1968).
[CrossRef]

1949

T. Förster, “Experimentelle und theoretische Untersuchung des zwischenmolekularen Ubergangs von Elektronenanregungsenergie,” Z. Naturforsch. B 4a, 321 (1949).

1948

T. Förster, “Zwischenmolekulare Energiewnderung und Fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
[CrossRef]

Anderson, A. Y.

P. R. F. Barnes, A. Y. Anderson, S. E. Koops, J. R. Durrant, and B. C. O'Regan, “Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements,” J. Phys. Chem. C 113(3), 1126–1136 (2009).
[CrossRef]

Armstrong, P. B.

B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nat. Photonics 3(7), 406–411 (2009).
[CrossRef]

Balci, H.

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem. 77(1), 51–76 (2008).
[CrossRef] [PubMed]

Baranoff, E.

J. H. Yum, B. E. Hardin, S. J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel, and M. K. Nazeeruddin, “Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes,” Angew. Chem. Int. Ed. 48(49), 9277–9280 (2009).
[CrossRef]

Barnes, P. R. F.

P. R. F. Barnes, A. Y. Anderson, S. E. Koops, J. R. Durrant, and B. C. O'Regan, “Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements,” J. Phys. Chem. C 113(3), 1126–1136 (2009).
[CrossRef]

Baumann, J.

J. Baumann and M. D. Fayer, “Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: Effects of spatial geometry on time-resolved observables,” J. Chem. Phys. 85(7), 4087–4107 (1986).
[CrossRef]

Blumen, A.

A. Blumen, J. Klafter, and G. Zumofen, “Influence of restricted geometries on the direct energy transfer,” J. Chem. Phys. 84(3), 1397–1401 (1986).
[CrossRef]

Bossart, O.

R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007).
[CrossRef]

Brillet, J.

I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Adv. Funct. Mater. 19(15), 2431–2436 (2009).
[CrossRef]

Bünzli, J.-C. G.

J.-C. G. Bünzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev. 34(12), 1048–1077 (2005).
[CrossRef] [PubMed]

Buranachai, C.

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem. 77(1), 51–76 (2008).
[CrossRef] [PubMed]

Calzaferri, G.

G. Calzaferri and K. Lutkouskaya, “Mimicking the antenna system of green plants,” Photochem. Photobiol. Sci. 7(8), 879–910 (2008).
[CrossRef] [PubMed]

R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007).
[CrossRef]

Carlsen, W. F.

D. D. Thomas, W. F. Carlsen, and L. Stryer, “Fluorescence energy transfer in the rapid-diffusion limit,” Proc. Natl. Acad. Sci. U.S.A. 75(12), 5746–5750 (1978).
[CrossRef] [PubMed]

Comte, P.

B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nat. Photonics 3(7), 406–411 (2009).
[CrossRef]

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

De Angelis, F.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” JACS 127(48), 16835–16847 (2005).
[CrossRef]

Ding, I. K.

I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Adv. Funct. Mater. 19(15), 2431–2436 (2009).
[CrossRef]

Drake, J. M.

J. M. Drake, J. Klafter, and P. Levitz, “Chemical and biological microstructures as probed by dynamic processes,” Science 251(5001), 1574–1579 (1991).
[CrossRef] [PubMed]

Durrant, J. R.

P. R. F. Barnes, A. Y. Anderson, S. E. Koops, J. R. Durrant, and B. C. O'Regan, “Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements,” J. Phys. Chem. C 113(3), 1126–1136 (2009).
[CrossRef]

Dykstra, T. E.

Y. R. Khan, T. E. Dykstra, and G. D. Scholes, “Exploring the Förster limit in a small FRET pair,” Chem. Phys. Lett. 461(4-6), 305–309 (2008).
[CrossRef]

Eaton, W. A.

B. Schuler and W. A. Eaton, “Protein folding studied by single-molecule FRET,” Curr. Opin. Struct. Biol. 18(1), 16–26 (2008).
[CrossRef] [PubMed]

Edder, C.

Y. X. Liu, M. A. Summers, C. Edder, J. M. J. Fréchet, and M. D. McGehee, “Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells,” Adv. Mater. 17(24), 2960–2964 (2005).
[CrossRef]

Elkana, Y.

Y. Elkana, J. Feitelson, and E. Katchalski, “Effect of Diffusion on Transfer of Electronic Excitation Energy,” J. Chem. Phys. 48(6), 2399–2404 (1968).
[CrossRef]

Fantacci, S.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” JACS 127(48), 16835–16847 (2005).
[CrossRef]

Farinha, J. P. S.

J. P. S. Farinha and J. M. G. Martinho, “Resonance Energy Transfer in Polymer Nanodomains,” J. Phys. Chem. C 112(29), 10591–10601 (2008).
[CrossRef]

Fayer, M. D.

J. Baumann and M. D. Fayer, “Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: Effects of spatial geometry on time-resolved observables,” J. Chem. Phys. 85(7), 4087–4107 (1986).
[CrossRef]

Feitelson, J.

Y. Elkana, J. Feitelson, and E. Katchalski, “Effect of Diffusion on Transfer of Electronic Excitation Energy,” J. Chem. Phys. 48(6), 2399–2404 (1968).
[CrossRef]

Förster, T.

T. Förster, “Experimentelle und theoretische Untersuchung des zwischenmolekularen Ubergangs von Elektronenanregungsenergie,” Z. Naturforsch. B 4a, 321 (1949).

T. Förster, “Zwischenmolekulare Energiewnderung und Fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
[CrossRef]

Frechet, J. M. J.

B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nat. Photonics 3(7), 406–411 (2009).
[CrossRef]

Fréchet, J. M. J.

Y. X. Liu, M. A. Summers, C. Edder, J. M. J. Fréchet, and M. D. McGehee, “Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells,” Adv. Mater. 17(24), 2960–2964 (2005).
[CrossRef]

Fung, B. K.-K.

B. K.-K. Fung and L. Stryer, “Surface density determination in membranes by fluorescence energy transfer,” Biochemistry 17(24), 5241–5248 (1978).
[CrossRef] [PubMed]

Grätzel, C.

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

Grätzel, M.

J. H. Yum, B. E. Hardin, S. J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel, and M. K. Nazeeruddin, “Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes,” Angew. Chem. Int. Ed. 48(49), 9277–9280 (2009).
[CrossRef]

I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Adv. Funct. Mater. 19(15), 2431–2436 (2009).
[CrossRef]

B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nat. Photonics 3(7), 406–411 (2009).
[CrossRef]

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” JACS 127(48), 16835–16847 (2005).
[CrossRef]

M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 164(1-3), 3–14 (2004).
[CrossRef]

B. O'Regan and M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Guardigli, M.

N. Sabbatini, M. Guardigli, J.-M. Lehn, and G. Mathis, “Luminescence of lanthanide cryptates: effects of phosphate and iodide anions,” J. Alloy. Comp. 180(1-2), 363–367 (1992).
[CrossRef]

Ha, T.

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem. 77(1), 51–76 (2008).
[CrossRef] [PubMed]

Hardin, B. E.

B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nat. Photonics 3(7), 406–411 (2009).
[CrossRef]

J. H. Yum, B. E. Hardin, S. J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel, and M. K. Nazeeruddin, “Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes,” Angew. Chem. Int. Ed. 48(49), 9277–9280 (2009).
[CrossRef]

I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Adv. Funct. Mater. 19(15), 2431–2436 (2009).
[CrossRef]

Hoke, E. T.

B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nat. Photonics 3(7), 406–411 (2009).
[CrossRef]

Ishitsuka, Y.

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem. 77(1), 51–76 (2008).
[CrossRef] [PubMed]

Ito, S.

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” JACS 127(48), 16835–16847 (2005).
[CrossRef]

Joo, C.

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem. 77(1), 51–76 (2008).
[CrossRef] [PubMed]

Katchalski, E.

I. Z. Steinberg and E. Katchalski, “Theoretical Analysis of the Role of Diffusion in Chemical Reactions, Fluorescence Quenching, and Nonradiative Energy Transfer,” J. Chem. Phys. 48(6), 2404–2410 (1968).
[CrossRef]

Y. Elkana, J. Feitelson, and E. Katchalski, “Effect of Diffusion on Transfer of Electronic Excitation Energy,” J. Chem. Phys. 48(6), 2399–2404 (1968).
[CrossRef]

Khan, Y. R.

Y. R. Khan, T. E. Dykstra, and G. D. Scholes, “Exploring the Förster limit in a small FRET pair,” Chem. Phys. Lett. 461(4-6), 305–309 (2008).
[CrossRef]

Klafter, J.

J. M. Drake, J. Klafter, and P. Levitz, “Chemical and biological microstructures as probed by dynamic processes,” Science 251(5001), 1574–1579 (1991).
[CrossRef] [PubMed]

A. Blumen, J. Klafter, and G. Zumofen, “Influence of restricted geometries on the direct energy transfer,” J. Chem. Phys. 84(3), 1397–1401 (1986).
[CrossRef]

Koeppe, R.

R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007).
[CrossRef]

Koops, S. E.

P. R. F. Barnes, A. Y. Anderson, S. E. Koops, J. R. Durrant, and B. C. O'Regan, “Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements,” J. Phys. Chem. C 113(3), 1126–1136 (2009).
[CrossRef]

Lehn, J.-M.

N. Sabbatini, M. Guardigli, J.-M. Lehn, and G. Mathis, “Luminescence of lanthanide cryptates: effects of phosphate and iodide anions,” J. Alloy. Comp. 180(1-2), 363–367 (1992).
[CrossRef]

Levitz, P.

J. M. Drake, J. Klafter, and P. Levitz, “Chemical and biological microstructures as probed by dynamic processes,” Science 251(5001), 1574–1579 (1991).
[CrossRef] [PubMed]

Liska, P.

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” JACS 127(48), 16835–16847 (2005).
[CrossRef]

Liu, Y. X.

Y. X. Liu, M. A. Summers, C. Edder, J. M. J. Fréchet, and M. D. McGehee, “Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells,” Adv. Mater. 17(24), 2960–2964 (2005).
[CrossRef]

Lutkouskaya, K.

G. Calzaferri and K. Lutkouskaya, “Mimicking the antenna system of green plants,” Photochem. Photobiol. Sci. 7(8), 879–910 (2008).
[CrossRef] [PubMed]

Mac, M.

J. Najbar and M. Mac, “Mechanisms of fluorescence quenching of aromatic molecules by potassium iodide and potassium bromide in methanol–ethanol solutions,” J. Chem. Soc., Faraday Trans. 87(10), 1523–1529 (1991).
[CrossRef]

Martinho, J. M. G.

J. P. S. Farinha and J. M. G. Martinho, “Resonance Energy Transfer in Polymer Nanodomains,” J. Phys. Chem. C 112(29), 10591–10601 (2008).
[CrossRef]

Mathis, G.

N. Sabbatini, M. Guardigli, J.-M. Lehn, and G. Mathis, “Luminescence of lanthanide cryptates: effects of phosphate and iodide anions,” J. Alloy. Comp. 180(1-2), 363–367 (1992).
[CrossRef]

McGehee, M. D.

J. H. Yum, B. E. Hardin, S. J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel, and M. K. Nazeeruddin, “Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes,” Angew. Chem. Int. Ed. 48(49), 9277–9280 (2009).
[CrossRef]

I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Adv. Funct. Mater. 19(15), 2431–2436 (2009).
[CrossRef]

B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nat. Photonics 3(7), 406–411 (2009).
[CrossRef]

Y. X. Liu, M. A. Summers, C. Edder, J. M. J. Fréchet, and M. D. McGehee, “Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells,” Adv. Mater. 17(24), 2960–2964 (2005).
[CrossRef]

Moon, S. J.

J. H. Yum, B. E. Hardin, S. J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel, and M. K. Nazeeruddin, “Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes,” Angew. Chem. Int. Ed. 48(49), 9277–9280 (2009).
[CrossRef]

Murakami, T. N.

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

Najbar, J.

J. Najbar and M. Mac, “Mechanisms of fluorescence quenching of aromatic molecules by potassium iodide and potassium bromide in methanol–ethanol solutions,” J. Chem. Soc., Faraday Trans. 87(10), 1523–1529 (1991).
[CrossRef]

Nazeeruddin, M. K.

B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nat. Photonics 3(7), 406–411 (2009).
[CrossRef]

J. H. Yum, B. E. Hardin, S. J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel, and M. K. Nazeeruddin, “Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes,” Angew. Chem. Int. Ed. 48(49), 9277–9280 (2009).
[CrossRef]

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” JACS 127(48), 16835–16847 (2005).
[CrossRef]

Nüesch, F.

J. H. Yum, B. E. Hardin, S. J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel, and M. K. Nazeeruddin, “Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes,” Angew. Chem. Int. Ed. 48(49), 9277–9280 (2009).
[CrossRef]

O'Regan, B.

B. O'Regan and M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

O'Regan, B. C.

P. R. F. Barnes, A. Y. Anderson, S. E. Koops, J. R. Durrant, and B. C. O'Regan, “Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements,” J. Phys. Chem. C 113(3), 1126–1136 (2009).
[CrossRef]

Parker, D.

D. Parker, “Luminescent lanthanide sensors for pH, pO2 and selected anions,” Coord. Chem. Rev. 205(1), 109–130 (2000).
[CrossRef]

Peter, L. M.

L. M. Peter, “Dye-sensitized nanocrystalline solar cells,” Phys. Chem. Chem. Phys. 9(21), 2630–2642 (2007).
[CrossRef] [PubMed]

Piguet, C.

J.-C. G. Bünzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev. 34(12), 1048–1077 (2005).
[CrossRef] [PubMed]

Rosenthal, S.

I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Adv. Funct. Mater. 19(15), 2431–2436 (2009).
[CrossRef]

Sabbatini, N.

N. Sabbatini, M. Guardigli, J.-M. Lehn, and G. Mathis, “Luminescence of lanthanide cryptates: effects of phosphate and iodide anions,” J. Alloy. Comp. 180(1-2), 363–367 (1992).
[CrossRef]

Sariciftci, N. S.

R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007).
[CrossRef]

Sauvage, F.

I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Adv. Funct. Mater. 19(15), 2431–2436 (2009).
[CrossRef]

Scholes, G. D.

Y. R. Khan, T. E. Dykstra, and G. D. Scholes, “Exploring the Förster limit in a small FRET pair,” Chem. Phys. Lett. 461(4-6), 305–309 (2008).
[CrossRef]

Schuler, B.

B. Schuler and W. A. Eaton, “Protein folding studied by single-molecule FRET,” Curr. Opin. Struct. Biol. 18(1), 16–26 (2008).
[CrossRef] [PubMed]

Selloni, A.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” JACS 127(48), 16835–16847 (2005).
[CrossRef]

Smith, E. H.

I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Adv. Funct. Mater. 19(15), 2431–2436 (2009).
[CrossRef]

Steinberg, I. Z.

I. Z. Steinberg and E. Katchalski, “Theoretical Analysis of the Role of Diffusion in Chemical Reactions, Fluorescence Quenching, and Nonradiative Energy Transfer,” J. Chem. Phys. 48(6), 2404–2410 (1968).
[CrossRef]

Stryer, L.

D. D. Thomas, W. F. Carlsen, and L. Stryer, “Fluorescence energy transfer in the rapid-diffusion limit,” Proc. Natl. Acad. Sci. U.S.A. 75(12), 5746–5750 (1978).
[CrossRef] [PubMed]

B. K.-K. Fung and L. Stryer, “Surface density determination in membranes by fluorescence energy transfer,” Biochemistry 17(24), 5241–5248 (1978).
[CrossRef] [PubMed]

Summers, M. A.

Y. X. Liu, M. A. Summers, C. Edder, J. M. J. Fréchet, and M. D. McGehee, “Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells,” Adv. Mater. 17(24), 2960–2964 (2005).
[CrossRef]

Takeru, B.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” JACS 127(48), 16835–16847 (2005).
[CrossRef]

Tétreault, N.

I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Adv. Funct. Mater. 19(15), 2431–2436 (2009).
[CrossRef]

Thomas, D. D.

D. D. Thomas, W. F. Carlsen, and L. Stryer, “Fluorescence energy transfer in the rapid-diffusion limit,” Proc. Natl. Acad. Sci. U.S.A. 75(12), 5746–5750 (1978).
[CrossRef] [PubMed]

Torres, T.

B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nat. Photonics 3(7), 406–411 (2009).
[CrossRef]

Viscardi, G.

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” JACS 127(48), 16835–16847 (2005).
[CrossRef]

Yum, J. H.

B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nat. Photonics 3(7), 406–411 (2009).
[CrossRef]

J. H. Yum, B. E. Hardin, S. J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel, and M. K. Nazeeruddin, “Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes,” Angew. Chem. Int. Ed. 48(49), 9277–9280 (2009).
[CrossRef]

Zumofen, G.

A. Blumen, J. Klafter, and G. Zumofen, “Influence of restricted geometries on the direct energy transfer,” J. Chem. Phys. 84(3), 1397–1401 (1986).
[CrossRef]

Adv. Funct. Mater.

I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Adv. Funct. Mater. 19(15), 2431–2436 (2009).
[CrossRef]

Adv. Mater.

Y. X. Liu, M. A. Summers, C. Edder, J. M. J. Fréchet, and M. D. McGehee, “Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells,” Adv. Mater. 17(24), 2960–2964 (2005).
[CrossRef]

Angew. Chem. Int. Ed.

J. H. Yum, B. E. Hardin, S. J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel, and M. K. Nazeeruddin, “Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes,” Angew. Chem. Int. Ed. 48(49), 9277–9280 (2009).
[CrossRef]

Ann. Phys.

T. Förster, “Zwischenmolekulare Energiewnderung und Fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
[CrossRef]

Annu. Rev. Biochem.

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem. 77(1), 51–76 (2008).
[CrossRef] [PubMed]

Biochemistry

B. K.-K. Fung and L. Stryer, “Surface density determination in membranes by fluorescence energy transfer,” Biochemistry 17(24), 5241–5248 (1978).
[CrossRef] [PubMed]

Chem. Phys. Lett.

Y. R. Khan, T. E. Dykstra, and G. D. Scholes, “Exploring the Förster limit in a small FRET pair,” Chem. Phys. Lett. 461(4-6), 305–309 (2008).
[CrossRef]

Chem. Soc. Rev.

J.-C. G. Bünzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev. 34(12), 1048–1077 (2005).
[CrossRef] [PubMed]

Coord. Chem. Rev.

D. Parker, “Luminescent lanthanide sensors for pH, pO2 and selected anions,” Coord. Chem. Rev. 205(1), 109–130 (2000).
[CrossRef]

Curr. Opin. Struct. Biol.

B. Schuler and W. A. Eaton, “Protein folding studied by single-molecule FRET,” Curr. Opin. Struct. Biol. 18(1), 16–26 (2008).
[CrossRef] [PubMed]

J. Alloy. Comp.

N. Sabbatini, M. Guardigli, J.-M. Lehn, and G. Mathis, “Luminescence of lanthanide cryptates: effects of phosphate and iodide anions,” J. Alloy. Comp. 180(1-2), 363–367 (1992).
[CrossRef]

J. Chem. Phys.

Y. Elkana, J. Feitelson, and E. Katchalski, “Effect of Diffusion on Transfer of Electronic Excitation Energy,” J. Chem. Phys. 48(6), 2399–2404 (1968).
[CrossRef]

J. Baumann and M. D. Fayer, “Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: Effects of spatial geometry on time-resolved observables,” J. Chem. Phys. 85(7), 4087–4107 (1986).
[CrossRef]

I. Z. Steinberg and E. Katchalski, “Theoretical Analysis of the Role of Diffusion in Chemical Reactions, Fluorescence Quenching, and Nonradiative Energy Transfer,” J. Chem. Phys. 48(6), 2404–2410 (1968).
[CrossRef]

A. Blumen, J. Klafter, and G. Zumofen, “Influence of restricted geometries on the direct energy transfer,” J. Chem. Phys. 84(3), 1397–1401 (1986).
[CrossRef]

J. Chem. Soc., Faraday Trans.

J. Najbar and M. Mac, “Mechanisms of fluorescence quenching of aromatic molecules by potassium iodide and potassium bromide in methanol–ethanol solutions,” J. Chem. Soc., Faraday Trans. 87(10), 1523–1529 (1991).
[CrossRef]

J. Photochem. Photobiol. Chem.

M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 164(1-3), 3–14 (2004).
[CrossRef]

J. Phys. Chem. C

P. R. F. Barnes, A. Y. Anderson, S. E. Koops, J. R. Durrant, and B. C. O'Regan, “Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements,” J. Phys. Chem. C 113(3), 1126–1136 (2009).
[CrossRef]

J. P. S. Farinha and J. M. G. Martinho, “Resonance Energy Transfer in Polymer Nanodomains,” J. Phys. Chem. C 112(29), 10591–10601 (2008).
[CrossRef]

JACS

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” JACS 127(48), 16835–16847 (2005).
[CrossRef]

Nat. Photonics

B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nat. Photonics 3(7), 406–411 (2009).
[CrossRef]

Nature

B. O'Regan and M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Photochem. Photobiol. Sci.

G. Calzaferri and K. Lutkouskaya, “Mimicking the antenna system of green plants,” Photochem. Photobiol. Sci. 7(8), 879–910 (2008).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys.

L. M. Peter, “Dye-sensitized nanocrystalline solar cells,” Phys. Chem. Chem. Phys. 9(21), 2630–2642 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

D. D. Thomas, W. F. Carlsen, and L. Stryer, “Fluorescence energy transfer in the rapid-diffusion limit,” Proc. Natl. Acad. Sci. U.S.A. 75(12), 5746–5750 (1978).
[CrossRef] [PubMed]

Science

J. M. Drake, J. Klafter, and P. Levitz, “Chemical and biological microstructures as probed by dynamic processes,” Science 251(5001), 1574–1579 (1991).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells

R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007).
[CrossRef]

Thin Solid Films

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008).
[CrossRef]

Z. Naturforsch. B

T. Förster, “Experimentelle und theoretische Untersuchung des zwischenmolekularen Ubergangs von Elektronenanregungsenergie,” Z. Naturforsch. B 4a, 321 (1949).

Other

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Geometries of FRET occurring from a single donor to a single acceptor and (b) from donors to a dense monolayer of acceptors with surface concentration CA as in the case of a dye sensitized solar cell with relay dyes.

Fig. 2
Fig. 2

(Color online) Geometries of the cylindrical (a) and spherical (b) pores of diameter 2Rp . The relay dye is distributed throughout the volume of the interior of the pore while the sensitizing dye densely covers the pore walls. (c) Calculated excitation transfer efficiency in cylindrical (dotted curve) and spherical (solid curve) pores in the absence of diffusion as a function of the ratio of the critical energy transfer distance Rc to the pore diameter 2Rp .

Fig. 3
Fig. 3

(Color online) Excitation transfer efficiency in (a) cylindrical and (b) spherical pores in the rapid diffusion limit as a function of the critical energy transfer distance, Rc and the distance of closest approach that the donors can be from the pore wall, Ra . The pore diameter was assumed to be 2Rp = 30nm. To determine the excitation efficiency for other pore sizes, scale Rc and Ra by the same proportionality factor that Rp is changed.

Fig. 4
Fig. 4

(Color online) Excitation transfer efficiency for a spherical pore (a) with significant quenching (kq[Q] = 109s−1) and (b) reduced quenching (kq[Q] = 106s−1) as a function of the relay dye lifetime and critical energy transfer distance in absence of quenching. The pore diameter was set to 2Rp = 30nm, the distance of closest approach was Ra = 0.5nm, and a relay dye diffusivity of D = 0.6nm2/ns was used in these calculations.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

k F = 1 τ 0 R 0 6 | r A r D | 6
R 0 6 = 9000 ln ( 10 ) κ 2 Q D , 0 128 π 5 n 4 N A F D ( λ ) ε A ( λ ) λ 4 d λ
k F ( r D ) = A i 1 τ 0 R 0 6 | r A i r D | 6
k F ( r D ) = 1 τ 0 S A C A R 0 6 | r A r D | 6 d r A 2
Q D , Q Q D , 0 = τ Q τ 0 = ( 1 + τ 0 j k q j [ Q j ] ) 1
R c = ( C A R 0 6 1 + τ 0 j k q j [ Q j ] ) 1 / 4
η E T E ( r D ) = k F ( r D ) τ Q 1 + k F ( r D )
η E T E ¯ = 1 V V η E T ( r D ) d r D 3 = 1 V V 1 ( 1 + τ Q k f ( r D ) ) 1 d r D 3 = 1 V V 1 ( 1 + τ Q τ 0 S A C A R 0 6 | r A r D | 6 d r A 2 ) 1 d r D 3 = 1 V V 1 ( 1 + S A R c 4 d r A 2 | r A r D | 6 ) 1 d r D 3
k F , c y l ( R ) = 1 τ 0 S A C A R 0 6 | r A r D | 6 d r A 2 = 1 τ 0 0 2 π C A R 0 6 R p d θ d z ( ( R p cos ( θ ) R ) 2 + ( R p sin ( θ ) ) 2 )
k F , s p h ( R ) = 1 τ 0 0 2 π 0 π C A R 0 6 R p 2 sin ( θ ) d θ d ϕ ( ( R p cos ( θ ) R ) 2 + ( R p sin ( θ ) ) 2 ) 3 = 1 τ 0 C A R 0 6 R p 4 4 π ( 1 + R 2 R p 2 ) ( 1 R 2 R p 2 ) 4
η E T E , c y l ¯ = 1 π R p 2 L 0 R p ( 1 ( 1 + τ Q k F , c y l ( R ) ) 1 ) 2 π L R d R
η E T E , s p h ¯ = 3 4 π R p 3 0 R p ( 1 ( 1 + τ Q k F , s p h ) 1 ) 4 π R 2 d R = 1 3 0 1 ( 1 + 64 π ( R c 2 R p ) 4 1 + r 2 ( 1 r 2 ) 4 ) 1 r 2 d r
k F ¯ = 1 V e V e k F ( r D ) d r D 3
η E T E ¯ = k F ¯ τ Q 1 + k F ¯ = 1 ( 1 + 1 V e V e S A R c 4 d r A 2 | r A r D | 6 d r D 3 ) 1
η E T E ¯ = 1 ( 1 + 3 4 π ( R p R b ) 3 0 R p R b τ Q k F , s p h 4 π R 2 d R ) 1 = 1 ( 1 + ( R c 2 R p ) 4 π ( 1 b ) 3 b 3 ) 1
P ( r D , t ) t = ( D 2 k f ( r D ) τ Q 1 ) P ( r D , t )
η E T E ¯ = 1 0 τ Q 1 V e P ( r D , t ) d r D 3 d t
P ( R , t ) t = D 1 R m R ( R m P R ) ( k f ( R ) + τ Q 1 ) P ( R , t )
P ( R = R p R a , t ) t = 0  and  P ( R = 0 ) t = 0

Metrics