Abstract

We propose and simulate a photovoltaic solar cell comprised of Si and Ge pn junctions in tandem. With an anti-reflection film at the front surface, we have shown that optimal solar cells favor a thin Si layer and a thick Ge layer with a thin tunnel hetero-diode placed in between. We predict efficiency ranging from 19% to 28% for AM1.5G solar irradiance concentrated from 1 ~ 1000 Suns for a cell with a total thickness ~100 μm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
    [CrossRef]
  2. J. Poortmans, and V. Arkhipov, Thin film solar cells: fabrication, characterization and applications, John Wiley & Sons LTD (2006).
  3. R. Brendel, Thin film crystalline silicon solar cells: physics and technology, Wiley-VCH Verlag (2003).
  4. Y. Hamakawa, Thin-film solar cells: next generation photovoltaics and its applications, Springer series in Photonics, (2004).
  5. A. V. Shah, and C. Droz, Thin film silicon: photovoltaics and large-area electronics, EFPL Press (2008).
  6. G. Beaucarne, Silicon thin film solar cells, Advances in Optoelectronics, article 36970 Hindawi, (2007).
  7. ASTM International, Designation G173-03, Standard tables for reference solar spectral irradiance: direct normal and hemispherical 37o tilted surface (2006)
  8. K. Takahashi, M. Fujiu, M. Sakuraba, and J. Muroto, 11th International Conference on Solid Films and Surfaces, Marseille, France, 212-13, pp. 193-196 (2003).
  9. M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, and J. Kouvetakis, “Chemical routes to Ge/Si(100) structures for low temperature Si-based semiconductor applications,” Appl. Phys. Lett. 90(8), 082108 (2007).
    [CrossRef]
  10. E. D. Palik, ed., Handbook of optical constants of solids, (Academic Press), vol. I (1985).
  11. A. Kiefer, M. Lagally, W. Buchwald, and R. A. Soref, “Electrical characterization of a tunneling device formed by bonding a silicon nanomembrane and germanium wafer,” PCSI-37 37th Conference on the Physics and Chemistry of Surfaces and Interfaces (Santa Fe, New Mexico, January 2010).
  12. D. Meyerhofer, G. A. Brown, and H. S. Sommers., “Degenerate germanium I, tunnel, excess, and thermal current in tunnel diodes,” Phys. Rev. 126(4), 1329–1341 (1962).
    [CrossRef]
  13. S. M. Sze, Physics of Semiconductor Devices, (Wiley, New York, 1981).

2007 (2)

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, and J. Kouvetakis, “Chemical routes to Ge/Si(100) structures for low temperature Si-based semiconductor applications,” Appl. Phys. Lett. 90(8), 082108 (2007).
[CrossRef]

1962 (1)

D. Meyerhofer, G. A. Brown, and H. S. Sommers., “Degenerate germanium I, tunnel, excess, and thermal current in tunnel diodes,” Phys. Rev. 126(4), 1329–1341 (1962).
[CrossRef]

Brown, G. A.

D. Meyerhofer, G. A. Brown, and H. S. Sommers., “Degenerate germanium I, tunnel, excess, and thermal current in tunnel diodes,” Phys. Rev. 126(4), 1329–1341 (1962).
[CrossRef]

Chizmeshya, A. V. G.

M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, and J. Kouvetakis, “Chemical routes to Ge/Si(100) structures for low temperature Si-based semiconductor applications,” Appl. Phys. Lett. 90(8), 082108 (2007).
[CrossRef]

Edmondson, K. M.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Fang, Y.-Y.

M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, and J. Kouvetakis, “Chemical routes to Ge/Si(100) structures for low temperature Si-based semiconductor applications,” Appl. Phys. Lett. 90(8), 082108 (2007).
[CrossRef]

Fetzer, C. M.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Karam, N. H.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

King, R. R.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Kinsey, G. S.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Kouvetakis, J.

M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, and J. Kouvetakis, “Chemical routes to Ge/Si(100) structures for low temperature Si-based semiconductor applications,” Appl. Phys. Lett. 90(8), 082108 (2007).
[CrossRef]

Law, D. C.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Meyerhofer, D.

D. Meyerhofer, G. A. Brown, and H. S. Sommers., “Degenerate germanium I, tunnel, excess, and thermal current in tunnel diodes,” Phys. Rev. 126(4), 1329–1341 (1962).
[CrossRef]

Sherif, R. A.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Sommers, H. S.

D. Meyerhofer, G. A. Brown, and H. S. Sommers., “Degenerate germanium I, tunnel, excess, and thermal current in tunnel diodes,” Phys. Rev. 126(4), 1329–1341 (1962).
[CrossRef]

Tolle, J.

M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, and J. Kouvetakis, “Chemical routes to Ge/Si(100) structures for low temperature Si-based semiconductor applications,” Appl. Phys. Lett. 90(8), 082108 (2007).
[CrossRef]

Wistey, M. A.

M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, and J. Kouvetakis, “Chemical routes to Ge/Si(100) structures for low temperature Si-based semiconductor applications,” Appl. Phys. Lett. 90(8), 082108 (2007).
[CrossRef]

Yoon, H.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[CrossRef]

M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, and J. Kouvetakis, “Chemical routes to Ge/Si(100) structures for low temperature Si-based semiconductor applications,” Appl. Phys. Lett. 90(8), 082108 (2007).
[CrossRef]

Phys. Rev. (1)

D. Meyerhofer, G. A. Brown, and H. S. Sommers., “Degenerate germanium I, tunnel, excess, and thermal current in tunnel diodes,” Phys. Rev. 126(4), 1329–1341 (1962).
[CrossRef]

Other (10)

S. M. Sze, Physics of Semiconductor Devices, (Wiley, New York, 1981).

E. D. Palik, ed., Handbook of optical constants of solids, (Academic Press), vol. I (1985).

A. Kiefer, M. Lagally, W. Buchwald, and R. A. Soref, “Electrical characterization of a tunneling device formed by bonding a silicon nanomembrane and germanium wafer,” PCSI-37 37th Conference on the Physics and Chemistry of Surfaces and Interfaces (Santa Fe, New Mexico, January 2010).

J. Poortmans, and V. Arkhipov, Thin film solar cells: fabrication, characterization and applications, John Wiley & Sons LTD (2006).

R. Brendel, Thin film crystalline silicon solar cells: physics and technology, Wiley-VCH Verlag (2003).

Y. Hamakawa, Thin-film solar cells: next generation photovoltaics and its applications, Springer series in Photonics, (2004).

A. V. Shah, and C. Droz, Thin film silicon: photovoltaics and large-area electronics, EFPL Press (2008).

G. Beaucarne, Silicon thin film solar cells, Advances in Optoelectronics, article 36970 Hindawi, (2007).

ASTM International, Designation G173-03, Standard tables for reference solar spectral irradiance: direct normal and hemispherical 37o tilted surface (2006)

K. Takahashi, M. Fujiu, M. Sakuraba, and J. Muroto, 11th International Conference on Solid Films and Surfaces, Marseille, France, 212-13, pp. 193-196 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of (a) the Si-Ge tandem solar cell (b) the energy band diagram and carrier flow under solar irradiance.

Fig. 2
Fig. 2

I-V characteristics at 500 suns of AM 1.5G solar irradiance for V t = 0 and g = 100 / Ω cm 2 .

Fig. 3
Fig. 3

Open-circuit voltage and short-circuit current vs. number of suns concentration.

Fig. 4
Fig. 4

Fill factor of the tandem PV cell vs. number of suns concentration for a range of the unit-area conductance of the tunnel junction.

Fig. 5.
Fig. 5.

Efficiency of c-Si on c-Ge tandem PV cell vs. number of suns concentration for a range of the unit-area conductance of the tunnel junction. Also shown is the efficiency of an all-Si single junction PV cell of the same total thickness for comparison.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

D e , Si 2 Δ n λ ( x ) x 2 Δ n λ ( x ) τ e , Si + G λ ( x ) = 0
G i , λ ( x ) = α i ( λ ) F i 1 ( λ ) exp [ α i ( λ ) ( x x i 1 ) ] , x i 1 < x < x i
F i ( λ ) = F i 1 ( λ ) exp [ α i ( λ ) ( x i x i 1 ) ]
F 0 ( λ ) = λ h c I ( λ )
Δ n λ ( x ) = A 1 exp ( x x 0 L e , Si ) + B 1 exp ( x x 0 L e , Si )       + α Si ( λ ) F 1 ( λ ) τ e , Si 1 α Si 2 ( λ ) L e , Si 2 exp [ α Si ( λ ) ( x x 0 ) ]     , x 0 < x < x 1
D e , Si d Δ n λ ( x ) d x | x = x i = S i Δ n λ ( x i )
J e ( λ ) = e D e , Si d Δ n λ ( x ) d x | x = x 1       = e D e , Si L e , Si [ A 1 exp ( x 1 x 0 L e , Si ) B 1 exp ( x 1 x 0 L e , Si ) α Si 2 ( λ ) F 1 ( λ ) τ e , Si L e , Si 1 α Si 2 ( λ ) L e , Si 2 ]
J h ( λ ) = e D h , Si d Δ p λ ( x ) d x | x = x 2 = e D h , Si L h , Si [ A 2 B 2 α Si 2 ( λ ) F 2 ( λ ) τ h , Si L h , Si 1 α Si 2 ( λ ) L h , Si 2 ]
J d ( λ ) = e [ F 2 ( λ ) F 1 ( λ ) ] .
J photo = [ J h ( λ ) + J e ( λ ) + J d ( λ ) ] d λ .
J = J photo J s [ exp ( e V Si k T ) 1 ]
V = V Si + V Ge V t .

Metrics