Abstract

An axially symmetric twisted nematic liquid crystal (ASTNLC) device, based on axially symmetric photoalignment, was demonstrated. Such an ASTNLC device can convert axial (azimuthal) to azimuthal (axial) polarization. The optical properties of the ASTNLC device are analyzed and found to agree with simulation results. The ASTNLC device with a specific device can be adopted as an arbitrary axial symmetric polarization converter or waveplate for axially, azimuthally or vertically polarized light. A design for converting linear polarized light to axially symmetric circular polarized light is also demonstrated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 281(1), 1–64 (1997).
    [CrossRef]
  2. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
    [CrossRef]
  3. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15(9), 5801–5808 (2007).
    [CrossRef] [PubMed]
  4. G. A. Swartzlander, “Peering into darkness with a vortex spatial filter,” Opt. Lett. 26(8), 497–499 (2001).
    [CrossRef]
  5. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
    [CrossRef] [PubMed]
  6. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33(15), 1817–1822 (2000).
    [CrossRef]
  7. J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
    [CrossRef]
  8. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12(22), 5475–5480 (2004).
    [CrossRef] [PubMed]
  9. S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14(26), 13095–13100 (2006).
    [CrossRef] [PubMed]
  10. R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(9), 1730–1731 (1989).
    [CrossRef]
  11. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996).
    [CrossRef] [PubMed]
  12. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings,” Opt. Lett. 28(7), 510–512 (2003).
    [CrossRef] [PubMed]
  13. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express 17(14), 11926–11934 (2009).
    [CrossRef] [PubMed]
  14. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Manipulation of the Pancharatnam phase in vectorial vortices,” Opt. Express 14(10), 4208–4220 (2006).
    [CrossRef] [PubMed]
  15. L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
    [CrossRef] [PubMed]
  16. C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
    [CrossRef]
  17. Y.-Y. Tzeng, S.-W. Ke, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16(6), 3768–3775 (2008).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (2)

2006 (3)

2004 (1)

2003 (2)

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[CrossRef]

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings,” Opt. Lett. 28(7), 510–512 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

2000 (1)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33(15), 1817–1822 (2000).
[CrossRef]

1999 (1)

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

1997 (1)

R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 281(1), 1–64 (1997).
[CrossRef]

1996 (1)

1989 (1)

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(9), 1730–1731 (1989).
[CrossRef]

Bernet, S.

Bhandari, R.

R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 281(1), 1–64 (1997).
[CrossRef]

Biener, G.

Bomzon, Z.

Chapin, S. C.

Cheng, K.-T.

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[CrossRef]

Cooper, J.

Courtial, J.

Dufresne, E. R.

Fu, T.-L.

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[CrossRef]

Fuh, A. Y.-G.

Fürhapter, S.

Germain, V.

Hasman, E.

Jau, H.-C.

Jesacher, A.

Jordan, P.

Ke, S.-W.

Kim, H. R.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

Kimball, B. R.

Kleiner, V.

Laczik, Z. J.

Lee, C.-R.

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[CrossRef]

Lee, J. H.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

Lee, S. D.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

Lin, L.-C.

Lin, T.-H.

Maurer, C.

Mo, T.-S.

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[CrossRef]

Nersisyan, S.

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33(15), 1817–1822 (2000).
[CrossRef]

Niv, A.

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33(15), 1817–1822 (2000).
[CrossRef]

Nose, T.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(9), 1730–1731 (1989).
[CrossRef]

Padgett, M.

Ritsch-Marte, M.

Sato, S.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(9), 1730–1731 (1989).
[CrossRef]

Schadt, M.

Schwaighofer, A.

Sinclair, G.

Stalder, M.

Steeves, D. M.

Swartzlander, G. A.

Tabiryan, N.

Ting, C.-L.

Tzeng, Y.-Y.

Yamaguchi, R.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(9), 1730–1731 (1989).
[CrossRef]

Appl. Phys. Lett. (2)

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83(21), 4285–4287 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(9), 1730–1731 (1989).
[CrossRef]

Opt. Express (8)

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12(22), 5475–5480 (2004).
[CrossRef] [PubMed]

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
[CrossRef] [PubMed]

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Manipulation of the Pancharatnam phase in vectorial vortices,” Opt. Express 14(10), 4208–4220 (2006).
[CrossRef] [PubMed]

S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14(26), 13095–13100 (2006).
[CrossRef] [PubMed]

L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[CrossRef] [PubMed]

A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15(9), 5801–5808 (2007).
[CrossRef] [PubMed]

Y.-Y. Tzeng, S.-W. Ke, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16(6), 3768–3775 (2008).
[CrossRef] [PubMed]

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express 17(14), 11926–11934 (2009).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. D: Appl. Phys. (1)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33(15), 1817–1822 (2000).
[CrossRef]

Phys. Rep. (1)

R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 281(1), 1–64 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sample fabrication setup.

Fig. 2
Fig. 2

Axially symmetric (a) azimuthal, (b) radial and (c) twisted nematic LC structures. Images of axially symmetric (d) azimuthal, (e) radial and (f) and (g) twisted nematic LC devices under a polarized optical microscope. P: polarizer, A: analyzer.

Fig. 3
Fig. 3

Measuring transmittance of ASTNLC cell; (a) β angle in front view and (b) testing setup.

Fig. 4
Fig. 4

T-β curves of ASTNLC device

Fig. 5
Fig. 5

The transmittance-voltage curves of an ASTNLC at positions of (a) A (β=0°), (b) B (β=45°) and (c) C (β=90°) marked in Fig. 3(a).

Fig. 6
Fig. 6

(a) Setup for converting polarization of linearly polarized beam using axially symmetric LC devices; (b) radially polarized light and (c) azimuthally polarized light analyzed using an analyzer (y-axis) under POM.

Fig. 7
Fig. 7

(a) Specific axially symmetric LC device; the top substrate exhibits radial alignment and the bottom substrate exhibits vortex alignment [17]. The angle between the entrance LC direction and the exit LC direction is α; (b) axially symmetric circularly polarized light was obtained by the conversion of a radially polarized light via a particular axially symmetric LC device (β=30°, α=30°, and Δnd=1.7891 μm)

Fig. 8
Fig. 8

(a), (b) Images of radial-vortex alignment sample observed under a POM; (c), (d) simulated results. The analyzer makes an angle of (a) 90°, (b) and (d) 45° with the polarizer.

Metrics