Abstract

Radiative corrections to the polarizability tensor of isotropic particles are fundamental to understand the energy balance between absorption and scattering processes. Equivalent radiative corrections for anisotropic particles are not well known. Assuming that the polarization within the particle is uniform, we derived a closed-form expression for the polarizability tensor which includes radiative corrections. In the absence of absorption, this expression of the polarizability tensor is consistent with the optical theorem. An analogous result for infinitely long cylinders was also derived. Magneto optical Kerr effects in non-absorbing nanoparticles with magneto-optical activity arise as a consequence of radiative corrections to the electrostatic polarizability tensor.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. van de Hulst, Light Scattering by small particles (Dover, New York, 1981).
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1998).
    [Crossref]
  3. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).
  4. E. M. Purcell and C. R. Pennypacker, “Scattering and Absorption of Light by Nonspherical Dielectric Grains,” Astrophys. J. 186, 705–714 (1973).
    [Crossref]
  5. B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [Crossref]
  6. B. T. Draine and J. Goodman, “Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
    [Crossref]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  8. J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
    [Crossref]
  9. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nature Photonics 1, 573–576 (2007).
    [Crossref]
  10. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
    [Crossref] [PubMed]
  11. R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006).
    [Crossref]
  12. L. S. Froufe-Pérez, R. Carminati, and J. J. Sáenz, “Fluorescence decay rate statistics of a single molecule in a disordered cluster of nanoparticles,” Phys. Rev. A 76, 013835 (2007).
    [Crossref]
  13. M. Laroche, S. Albaladejo, R. Carminati, and J. J. Sáenz, “Optical resonances in dielectric nanorod arrays: Field induced fluorescence enhancement,” Opt. Lett. 32, 2762–2764 (2007).
    [Crossref] [PubMed]
  14. M. Spuch-Calvar, L. Rodriguez-Lorenzo, M. P. Morales, R. A. Alvarez-Puebla, and L. M. Liz-Marzan, “Bifunctional nanocomposites with long-term stability, as SERS optical accumulators for ultrasensitive analysis,” J. Phys. Chem. C 113, 3373–3377 (2009).
    [Crossref]
  15. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
    [Crossref]
  16. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
    [Crossref]
  17. R. Gómez-Medina and J. J. Sáenz “Unusually strong optical interactions between particles in quasi-one-dimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
    [Crossref]
  18. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz “Scattering Forces from the Curl of the Spin Angular Momentum of a Light Field,” Phys. Rev. Lett. 102, 113602 (2009).
    [Crossref] [PubMed]
  19. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys. 3, 477–480 (2007).
    [Crossref]
  20. S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009).
    [Crossref] [PubMed]
  21. M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
    [Crossref] [PubMed]
  22. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
    [Crossref]
  23. J. B. Gonzalez-Diaz, A. García-Martin, G. Armelles, J. M. García-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
    [Crossref]
  24. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett. 8, 4048–4052 (2008).
    [Crossref] [PubMed]
  25. D. Bedeaux and P. Mazur, “On the critical behaviour of the dielectric constant for a nonpolar fluid,” Physica 67, 23–54 (1973).
    [Crossref]
  26. V. V. Varadan, A. Lakhtakia, and V. K. Varadan, “Scattering by three-dimensional anisotropic scatterers,” IEEE Trans. Antennas Propag. 37, 800–802 (1989).
    [Crossref]
  27. A. Lakhtakia, “General theory of the Purcell-Pennypacker scattering approach and its extension to bianisotropic scatterers,” Astrophys. J. 394, 494–499 (1992).
    [Crossref]
  28. A. H. Sihvola, “Dielectric polarizability of a sphere with arbitrary anisotropy,” Opt. Lett. 19, 430–432 (1994).
    [Crossref] [PubMed]
  29. W. S. Weiglhofer, “Dielectric polarizability of a sphere with arbitrary anisotropy: comment,” Opt. Lett. 19, 1663–1663 (1994); A. H. Sihvola, “Dielectric polarizability of a sphere with arbitrary anisotropy: reply to comment,” Opt. Lett. 19, 1664–1664 (1994).
    [Crossref] [PubMed]
  30. K. Hinsen, A. Bratz, and B. U. Felderhof, “Anisotropic dielectric tensor and the Hall effect in a suspension of spheres,” Phys. Rev. B. 23, 14995–15003 (1992).
    [Crossref]
  31. D. A. Smith and K. L. Stokes “Discrete dipole approximation for magnetooptical scattering calculations,” Opt. Express 14, 5746–5754 (2006).
    [Crossref] [PubMed]
  32. A. Lakhtakia, “On the polarizability dyadics of electrically small, convex objects,” Int. J. Infrared Millim. Waves 14, 2269–2275 (1993).
    [Crossref]
  33. B. Shanker and A. Lakhtakia, “Extended Maxwell Garnett Formalism for Composite Adhesives for Microwave-Assisted Adhesion of Polymer Surfaces,” J. Composite Mater. 27, 1203–1213 (1993).
    [Crossref]
  34. A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. of Mod. Phys. C,  3, 583–603 (1992); corrections: ibid 4, 721–722 (1993).
    [Crossref]
  35. J. B. González-Diáz, A. García-Martín, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R. B. Wehrspohn, and U. Gosele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
    [Crossref]
  36. J. B. González-Diáz, J. M. García-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
    [Crossref] [PubMed]
  37. G. Armelles, J. B. González-Diáz, A. García-Martin, J. M. García-Martin, A. Cebollada, M. U. Gonzalez, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112 (2008).
    [Crossref] [PubMed]
  38. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999), 3rd edition, Chap. 6,9.
  39. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).
  40. J. van Bladel, “Some remarks on Green’s dyadic for infinite space,” IRE Trans. Antennas Propag. 9, 563–566 (1961).
    [Crossref]
  41. A. D. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc. IEEE 68, 248–263 (1980).
    [Crossref]
  42. J. J. H. WangGeneralized Moment Methods in Electromagnetics (John Wiley, New York, 1991)
  43. P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
    [Crossref]
  44. R. Gómez-Medina, M. Laroche, and J. J. Sáenz, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Express 14, 3730–3737 (2006).
    [Crossref] [PubMed]
  45. M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: An analytical study,” Phys. Rev. B 74, 245422 (2006).
    [Crossref]
  46. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984).
  47. M. Osada, M. Itose, Y. Ebina, K. Ono, S. Ueda, K. Kobayashi, and T. Sasaki, “Gigantic magneto-optical effects induced by Fe/Co-cosubstitution in titania nanosheets,” Appl. Phys. Lett. 92, 253110 (2008).
    [Crossref]

2009 (3)

M. Spuch-Calvar, L. Rodriguez-Lorenzo, M. P. Morales, R. A. Alvarez-Puebla, and L. M. Liz-Marzan, “Bifunctional nanocomposites with long-term stability, as SERS optical accumulators for ultrasensitive analysis,” J. Phys. Chem. C 113, 3373–3377 (2009).
[Crossref]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz “Scattering Forces from the Curl of the Spin Angular Momentum of a Light Field,” Phys. Rev. Lett. 102, 113602 (2009).
[Crossref] [PubMed]

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009).
[Crossref] [PubMed]

2008 (6)

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

J. B. González-Diáz, J. M. García-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

G. Armelles, J. B. González-Diáz, A. García-Martin, J. M. García-Martin, A. Cebollada, M. U. Gonzalez, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112 (2008).
[Crossref] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref] [PubMed]

M. Osada, M. Itose, Y. Ebina, K. Ono, S. Ueda, K. Kobayashi, and T. Sasaki, “Gigantic magneto-optical effects induced by Fe/Co-cosubstitution in titania nanosheets,” Appl. Phys. Lett. 92, 253110 (2008).
[Crossref]

2007 (7)

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nature Photonics 1, 573–576 (2007).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys. 3, 477–480 (2007).
[Crossref]

L. S. Froufe-Pérez, R. Carminati, and J. J. Sáenz, “Fluorescence decay rate statistics of a single molecule in a disordered cluster of nanoparticles,” Phys. Rev. A 76, 013835 (2007).
[Crossref]

M. Laroche, S. Albaladejo, R. Carminati, and J. J. Sáenz, “Optical resonances in dielectric nanorod arrays: Field induced fluorescence enhancement,” Opt. Lett. 32, 2762–2764 (2007).
[Crossref] [PubMed]

J. B. González-Diáz, A. García-Martín, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R. B. Wehrspohn, and U. Gosele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
[Crossref] [PubMed]

J. B. Gonzalez-Diaz, A. García-Martin, G. Armelles, J. M. García-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[Crossref]

2006 (4)

D. A. Smith and K. L. Stokes “Discrete dipole approximation for magnetooptical scattering calculations,” Opt. Express 14, 5746–5754 (2006).
[Crossref] [PubMed]

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006).
[Crossref]

R. Gómez-Medina, M. Laroche, and J. J. Sáenz, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Express 14, 3730–3737 (2006).
[Crossref] [PubMed]

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: An analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]

2005 (1)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

2004 (3)

R. Gómez-Medina and J. J. Sáenz “Unusually strong optical interactions between particles in quasi-one-dimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
[Crossref]

J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

2000 (1)

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
[Crossref]

1994 (2)

1993 (3)

A. Lakhtakia, “On the polarizability dyadics of electrically small, convex objects,” Int. J. Infrared Millim. Waves 14, 2269–2275 (1993).
[Crossref]

B. Shanker and A. Lakhtakia, “Extended Maxwell Garnett Formalism for Composite Adhesives for Microwave-Assisted Adhesion of Polymer Surfaces,” J. Composite Mater. 27, 1203–1213 (1993).
[Crossref]

B. T. Draine and J. Goodman, “Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[Crossref]

1992 (3)

A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. of Mod. Phys. C,  3, 583–603 (1992); corrections: ibid 4, 721–722 (1993).
[Crossref]

A. Lakhtakia, “General theory of the Purcell-Pennypacker scattering approach and its extension to bianisotropic scatterers,” Astrophys. J. 394, 494–499 (1992).
[Crossref]

K. Hinsen, A. Bratz, and B. U. Felderhof, “Anisotropic dielectric tensor and the Hall effect in a suspension of spheres,” Phys. Rev. B. 23, 14995–15003 (1992).
[Crossref]

1989 (1)

V. V. Varadan, A. Lakhtakia, and V. K. Varadan, “Scattering by three-dimensional anisotropic scatterers,” IEEE Trans. Antennas Propag. 37, 800–802 (1989).
[Crossref]

1988 (1)

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

1980 (1)

A. D. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc. IEEE 68, 248–263 (1980).
[Crossref]

1973 (2)

E. M. Purcell and C. R. Pennypacker, “Scattering and Absorption of Light by Nonspherical Dielectric Grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

D. Bedeaux and P. Mazur, “On the critical behaviour of the dielectric constant for a nonpolar fluid,” Physica 67, 23–54 (1973).
[Crossref]

1961 (1)

J. van Bladel, “Some remarks on Green’s dyadic for infinite space,” IRE Trans. Antennas Propag. 9, 563–566 (1961).
[Crossref]

Acimovic, S.

Akin, D.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
[Crossref] [PubMed]

Alaverdyan, Y.

J. B. González-Diáz, J. M. García-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Albaladejo, S.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz “Scattering Forces from the Curl of the Spin Angular Momentum of a Light Field,” Phys. Rev. Lett. 102, 113602 (2009).
[Crossref] [PubMed]

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009).
[Crossref] [PubMed]

M. Laroche, S. Albaladejo, R. Carminati, and J. J. Sáenz, “Optical resonances in dielectric nanorod arrays: Field induced fluorescence enhancement,” Opt. Lett. 32, 2762–2764 (2007).
[Crossref] [PubMed]

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: An analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]

Alvarez-Puebla, R. A.

M. Spuch-Calvar, L. Rodriguez-Lorenzo, M. P. Morales, R. A. Alvarez-Puebla, and L. M. Liz-Marzan, “Bifunctional nanocomposites with long-term stability, as SERS optical accumulators for ultrasensitive analysis,” J. Phys. Chem. C 113, 3373–3377 (2009).
[Crossref]

Armelles, G.

G. Armelles, J. B. González-Diáz, A. García-Martin, J. M. García-Martin, A. Cebollada, M. U. Gonzalez, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112 (2008).
[Crossref] [PubMed]

J. B. González-Diáz, J. M. García-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

J. B. González-Diáz, A. García-Martín, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R. B. Wehrspohn, and U. Gosele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

J. B. Gonzalez-Diaz, A. García-Martin, G. Armelles, J. M. García-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[Crossref]

Atwater, H. A.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Badenes, G.

Badve, S.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
[Crossref] [PubMed]

Bardhan, R.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Bashir, R.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
[Crossref] [PubMed]

Bedeaux, D.

D. Bedeaux and P. Mazur, “On the critical behaviour of the dielectric constant for a nonpolar fluid,” Physica 67, 23–54 (1973).
[Crossref]

Bhattacharya, K.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1998).
[Crossref]

Bozhevolnyi, S. I.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

Bratz, A.

K. Hinsen, A. Bratz, and B. U. Felderhof, “Anisotropic dielectric tensor and the Hall effect in a suspension of spheres,” Phys. Rev. B. 23, 14995–15003 (1992).
[Crossref]

Carminati, R.

L. S. Froufe-Pérez, R. Carminati, and J. J. Sáenz, “Fluorescence decay rate statistics of a single molecule in a disordered cluster of nanoparticles,” Phys. Rev. A 76, 013835 (2007).
[Crossref]

M. Laroche, S. Albaladejo, R. Carminati, and J. J. Sáenz, “Optical resonances in dielectric nanorod arrays: Field induced fluorescence enhancement,” Opt. Lett. 32, 2762–2764 (2007).
[Crossref] [PubMed]

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006).
[Crossref]

Cebollada, A.

G. Armelles, J. B. González-Diáz, A. García-Martin, J. M. García-Martin, A. Cebollada, M. U. Gonzalez, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112 (2008).
[Crossref] [PubMed]

J. B. González-Diáz, J. M. García-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

J. B. Gonzalez-Diaz, A. García-Martin, G. Armelles, J. M. García-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[Crossref]

Cesario, J.

Chaumet, P. C.

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
[Crossref]

Choi, M.-R.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
[Crossref] [PubMed]

Clare, S. E.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
[Crossref] [PubMed]

Clarke, R.

J. B. Gonzalez-Diaz, A. García-Martin, G. Armelles, J. M. García-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[Crossref]

Clavero, C.

J. B. Gonzalez-Diaz, A. García-Martin, G. Armelles, J. M. García-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Dicken, M. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

Draine, B. T.

B. T. Draine and J. Goodman, “Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[Crossref]

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Ebina, Y.

M. Osada, M. Itose, Y. Ebina, K. Ono, S. Ueda, K. Kobayashi, and T. Sasaki, “Gigantic magneto-optical effects induced by Fe/Co-cosubstitution in titania nanosheets,” Appl. Phys. Lett. 92, 253110 (2008).
[Crossref]

Felderhof, B. U.

K. Hinsen, A. Bratz, and B. U. Felderhof, “Anisotropic dielectric tensor and the Hall effect in a suspension of spheres,” Phys. Rev. B. 23, 14995–15003 (1992).
[Crossref]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Froufe-Pérez, L. S.

L. S. Froufe-Pérez, R. Carminati, and J. J. Sáenz, “Fluorescence decay rate statistics of a single molecule in a disordered cluster of nanoparticles,” Phys. Rev. A 76, 013835 (2007).
[Crossref]

García-Martin, A.

G. Armelles, J. B. González-Diáz, A. García-Martin, J. M. García-Martin, A. Cebollada, M. U. Gonzalez, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112 (2008).
[Crossref] [PubMed]

J. B. Gonzalez-Diaz, A. García-Martin, G. Armelles, J. M. García-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[Crossref]

García-Martin, J. M.

G. Armelles, J. B. González-Diáz, A. García-Martin, J. M. García-Martin, A. Cebollada, M. U. Gonzalez, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112 (2008).
[Crossref] [PubMed]

J. B. González-Diáz, J. M. García-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

J. B. Gonzalez-Diaz, A. García-Martin, G. Armelles, J. M. García-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[Crossref]

García-Martín, A.

J. B. González-Diáz, A. García-Martín, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R. B. Wehrspohn, and U. Gosele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

García-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref] [PubMed]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys. 3, 477–480 (2007).
[Crossref]

Gómez Rivas, J.

J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[Crossref]

Gómez-Medina, R.

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: An analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]

R. Gómez-Medina, M. Laroche, and J. J. Sáenz, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Express 14, 3730–3737 (2006).
[Crossref] [PubMed]

R. Gómez-Medina and J. J. Sáenz “Unusually strong optical interactions between particles in quasi-one-dimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
[Crossref]

Gonzalez, M. U.

Gonzalez-Diaz, J. B.

J. B. Gonzalez-Diaz, A. García-Martin, G. Armelles, J. M. García-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[Crossref]

González-Diáz, J. B.

J. B. González-Diáz, J. M. García-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

G. Armelles, J. B. González-Diáz, A. García-Martin, J. M. García-Martin, A. Cebollada, M. U. Gonzalez, S. Acimovic, J. Cesario, R. Quidant, and G. Badenes, “Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers,” Opt. Express 16, 16104–16112 (2008).
[Crossref] [PubMed]

J. B. González-Diáz, A. García-Martín, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R. B. Wehrspohn, and U. Gosele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

Goodman, J.

B. T. Draine and J. Goodman, “Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[Crossref]

Gosele, U.

J. B. González-Diáz, A. García-Martín, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R. B. Wehrspohn, and U. Gosele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

Greffet, J. J.

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006).
[Crossref]

Halas, N. J.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
[Crossref] [PubMed]

Haring Bolivar, P.

J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).

Henkel, C.

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006).
[Crossref]

Hinsen, K.

K. Hinsen, A. Bratz, and B. U. Felderhof, “Anisotropic dielectric tensor and the Hall effect in a suspension of spheres,” Phys. Rev. B. 23, 14995–15003 (1992).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1998).
[Crossref]

Itose, M.

M. Osada, M. Itose, Y. Ebina, K. Ono, S. Ueda, K. Kobayashi, and T. Sasaki, “Gigantic magneto-optical effects induced by Fe/Co-cosubstitution in titania nanosheets,” Appl. Phys. Lett. 92, 253110 (2008).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999), 3rd edition, Chap. 6,9.

Kall, M.

J. B. González-Diáz, J. M. García-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Kobayashi, K.

M. Osada, M. Itose, Y. Ebina, K. Ono, S. Ueda, K. Kobayashi, and T. Sasaki, “Gigantic magneto-optical effects induced by Fe/Co-cosubstitution in titania nanosheets,” Appl. Phys. Lett. 92, 253110 (2008).
[Crossref]

Kuipers, L.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nature Photonics 1, 573–576 (2007).
[Crossref]

Kumah, D. P.

J. B. Gonzalez-Diaz, A. García-Martin, G. Armelles, J. M. García-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[Crossref]

Kurz, H.

J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[Crossref]

Kuttge, M.

J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[Crossref]

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).

Lakhtakia, A.

A. Lakhtakia, “On the polarizability dyadics of electrically small, convex objects,” Int. J. Infrared Millim. Waves 14, 2269–2275 (1993).
[Crossref]

B. Shanker and A. Lakhtakia, “Extended Maxwell Garnett Formalism for Composite Adhesives for Microwave-Assisted Adhesion of Polymer Surfaces,” J. Composite Mater. 27, 1203–1213 (1993).
[Crossref]

A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. of Mod. Phys. C,  3, 583–603 (1992); corrections: ibid 4, 721–722 (1993).
[Crossref]

A. Lakhtakia, “General theory of the Purcell-Pennypacker scattering approach and its extension to bianisotropic scatterers,” Astrophys. J. 394, 494–499 (1992).
[Crossref]

V. V. Varadan, A. Lakhtakia, and V. K. Varadan, “Scattering by three-dimensional anisotropic scatterers,” IEEE Trans. Antennas Propag. 37, 800–802 (1989).
[Crossref]

Landau, L. D.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984).

Laroche, M.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz “Scattering Forces from the Curl of the Spin Angular Momentum of a Light Field,” Phys. Rev. Lett. 102, 113602 (2009).
[Crossref] [PubMed]

M. Laroche, S. Albaladejo, R. Carminati, and J. J. Sáenz, “Optical resonances in dielectric nanorod arrays: Field induced fluorescence enhancement,” Opt. Lett. 32, 2762–2764 (2007).
[Crossref] [PubMed]

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: An analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]

R. Gómez-Medina, M. Laroche, and J. J. Sáenz, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Express 14, 3730–3737 (2006).
[Crossref] [PubMed]

Leosson, K.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

Levin, C. S.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
[Crossref] [PubMed]

Lezec, H. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984).

Liz-Marzan, L. M.

M. Spuch-Calvar, L. Rodriguez-Lorenzo, M. P. Morales, R. A. Alvarez-Puebla, and L. M. Liz-Marzan, “Bifunctional nanocomposites with long-term stability, as SERS optical accumulators for ultrasensitive analysis,” J. Phys. Chem. C 113, 3373–3377 (2009).
[Crossref]

Lukaszew, R. A.

J. B. Gonzalez-Diaz, A. García-Martin, G. Armelles, J. M. García-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[Crossref]

Marqués, M. I.

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009).
[Crossref] [PubMed]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz “Scattering Forces from the Curl of the Spin Angular Momentum of a Light Field,” Phys. Rev. Lett. 102, 113602 (2009).
[Crossref] [PubMed]

Martin-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref] [PubMed]

Mazur, P.

D. Bedeaux and P. Mazur, “On the critical behaviour of the dielectric constant for a nonpolar fluid,” Physica 67, 23–54 (1973).
[Crossref]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).

Morales, M. P.

M. Spuch-Calvar, L. Rodriguez-Lorenzo, M. P. Morales, R. A. Alvarez-Puebla, and L. M. Liz-Marzan, “Bifunctional nanocomposites with long-term stability, as SERS optical accumulators for ultrasensitive analysis,” J. Phys. Chem. C 113, 3373–3377 (2009).
[Crossref]

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref] [PubMed]

Navas, D.

J. B. González-Diáz, A. García-Martín, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R. B. Wehrspohn, and U. Gosele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

Nielsch, K.

J. B. González-Diáz, A. García-Martín, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R. B. Wehrspohn, and U. Gosele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

Nieto-Vesperinas, M.

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
[Crossref]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).

Ono, K.

M. Osada, M. Itose, Y. Ebina, K. Ono, S. Ueda, K. Kobayashi, and T. Sasaki, “Gigantic magneto-optical effects induced by Fe/Co-cosubstitution in titania nanosheets,” Appl. Phys. Lett. 92, 253110 (2008).
[Crossref]

Osada, M.

M. Osada, M. Itose, Y. Ebina, K. Ono, S. Ueda, K. Kobayashi, and T. Sasaki, “Gigantic magneto-optical effects induced by Fe/Co-cosubstitution in titania nanosheets,” Appl. Phys. Lett. 92, 253110 (2008).
[Crossref]

Pacifici, D.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and Absorption of Light by Nonspherical Dielectric Grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Pitaevskii, L. P.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984).

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and Absorption of Light by Nonspherical Dielectric Grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Quidant, R.

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys. 3, 477–480 (2007).
[Crossref]

Robinson, J. P.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
[Crossref] [PubMed]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref] [PubMed]

Rodriguez-Lorenzo, L.

M. Spuch-Calvar, L. Rodriguez-Lorenzo, M. P. Morales, R. A. Alvarez-Puebla, and L. M. Liz-Marzan, “Bifunctional nanocomposites with long-term stability, as SERS optical accumulators for ultrasensitive analysis,” J. Phys. Chem. C 113, 3373–3377 (2009).
[Crossref]

Sáenz, J. J.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz “Scattering Forces from the Curl of the Spin Angular Momentum of a Light Field,” Phys. Rev. Lett. 102, 113602 (2009).
[Crossref] [PubMed]

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009).
[Crossref] [PubMed]

M. Laroche, S. Albaladejo, R. Carminati, and J. J. Sáenz, “Optical resonances in dielectric nanorod arrays: Field induced fluorescence enhancement,” Opt. Lett. 32, 2762–2764 (2007).
[Crossref] [PubMed]

L. S. Froufe-Pérez, R. Carminati, and J. J. Sáenz, “Fluorescence decay rate statistics of a single molecule in a disordered cluster of nanoparticles,” Phys. Rev. A 76, 013835 (2007).
[Crossref]

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: An analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]

R. Gómez-Medina, M. Laroche, and J. J. Sáenz, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Express 14, 3730–3737 (2006).
[Crossref] [PubMed]

R. Gómez-Medina and J. J. Sáenz “Unusually strong optical interactions between particles in quasi-one-dimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
[Crossref]

Sánchez-Gil, J. A.

J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[Crossref]

Sandtke, M.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nature Photonics 1, 573–576 (2007).
[Crossref]

Sasaki, T.

M. Osada, M. Itose, Y. Ebina, K. Ono, S. Ueda, K. Kobayashi, and T. Sasaki, “Gigantic magneto-optical effects induced by Fe/Co-cosubstitution in titania nanosheets,” Appl. Phys. Lett. 92, 253110 (2008).
[Crossref]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

Scheffold, F.

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009).
[Crossref] [PubMed]

Sepulveda, B.

J. B. González-Diáz, J. M. García-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Shanker, B.

B. Shanker and A. Lakhtakia, “Extended Maxwell Garnett Formalism for Composite Adhesives for Microwave-Assisted Adhesion of Polymer Surfaces,” J. Composite Mater. 27, 1203–1213 (1993).
[Crossref]

Sihvola, A. H.

Skuza, J. R.

J. B. Gonzalez-Diaz, A. García-Martin, G. Armelles, J. M. García-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[Crossref]

Smith, D. A.

Spuch-Calvar, M.

M. Spuch-Calvar, L. Rodriguez-Lorenzo, M. P. Morales, R. A. Alvarez-Puebla, and L. M. Liz-Marzan, “Bifunctional nanocomposites with long-term stability, as SERS optical accumulators for ultrasensitive analysis,” J. Phys. Chem. C 113, 3373–3377 (2009).
[Crossref]

Stanley, J. K.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
[Crossref] [PubMed]

Stanton-Maxey, K. J.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
[Crossref] [PubMed]

Stokes, K. L.

Sturgis, J.

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
[Crossref] [PubMed]

Sweatlock, L. A.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).

Ueda, S.

M. Osada, M. Itose, Y. Ebina, K. Ono, S. Ueda, K. Kobayashi, and T. Sasaki, “Gigantic magneto-optical effects induced by Fe/Co-cosubstitution in titania nanosheets,” Appl. Phys. Lett. 92, 253110 (2008).
[Crossref]

van Bladel, J.

J. van Bladel, “Some remarks on Green’s dyadic for infinite space,” IRE Trans. Antennas Propag. 9, 563–566 (1961).
[Crossref]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by small particles (Dover, New York, 1981).

Varadan, V. K.

V. V. Varadan, A. Lakhtakia, and V. K. Varadan, “Scattering by three-dimensional anisotropic scatterers,” IEEE Trans. Antennas Propag. 37, 800–802 (1989).
[Crossref]

Varadan, V. V.

V. V. Varadan, A. Lakhtakia, and V. K. Varadan, “Scattering by three-dimensional anisotropic scatterers,” IEEE Trans. Antennas Propag. 37, 800–802 (1989).
[Crossref]

Vazquez, M.

J. B. González-Diáz, A. García-Martín, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R. B. Wehrspohn, and U. Gosele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

Vigoureux, J. M.

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006).
[Crossref]

Wang, J. J. H.

J. J. H. WangGeneralized Moment Methods in Electromagnetics (John Wiley, New York, 1991)

Wehrspohn, R. B.

J. B. González-Diáz, A. García-Martín, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R. B. Wehrspohn, and U. Gosele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

Weiglhofer, W. S.

Yaghjian, A. D.

A. D. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc. IEEE 68, 248–263 (1980).
[Crossref]

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys. 3, 477–480 (2007).
[Crossref]

Adv. Mater. (1)

J. B. González-Diáz, A. García-Martín, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R. B. Wehrspohn, and U. Gosele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007).
[Crossref]

Appl. Phys. Lett. (3)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]

M. Osada, M. Itose, Y. Ebina, K. Ono, S. Ueda, K. Kobayashi, and T. Sasaki, “Gigantic magneto-optical effects induced by Fe/Co-cosubstitution in titania nanosheets,” Appl. Phys. Lett. 92, 253110 (2008).
[Crossref]

Astrophys. J. (4)

E. M. Purcell and C. R. Pennypacker, “Scattering and Absorption of Light by Nonspherical Dielectric Grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

B. T. Draine and J. Goodman, “Beyond Clausius-Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[Crossref]

A. Lakhtakia, “General theory of the Purcell-Pennypacker scattering approach and its extension to bianisotropic scatterers,” Astrophys. J. 394, 494–499 (1992).
[Crossref]

IEEE Trans. Antennas Propag. (1)

V. V. Varadan, A. Lakhtakia, and V. K. Varadan, “Scattering by three-dimensional anisotropic scatterers,” IEEE Trans. Antennas Propag. 37, 800–802 (1989).
[Crossref]

Int. J. Infrared Millim. Waves (1)

A. Lakhtakia, “On the polarizability dyadics of electrically small, convex objects,” Int. J. Infrared Millim. Waves 14, 2269–2275 (1993).
[Crossref]

Int. J. of Mod. Phys. C (1)

A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. of Mod. Phys. C,  3, 583–603 (1992); corrections: ibid 4, 721–722 (1993).
[Crossref]

IRE Trans. Antennas Propag. (1)

J. van Bladel, “Some remarks on Green’s dyadic for infinite space,” IRE Trans. Antennas Propag. 9, 563–566 (1961).
[Crossref]

J. Composite Mater. (1)

B. Shanker and A. Lakhtakia, “Extended Maxwell Garnett Formalism for Composite Adhesives for Microwave-Assisted Adhesion of Polymer Surfaces,” J. Composite Mater. 27, 1203–1213 (1993).
[Crossref]

J. Phys. Chem. C (1)

M. Spuch-Calvar, L. Rodriguez-Lorenzo, M. P. Morales, R. A. Alvarez-Puebla, and L. M. Liz-Marzan, “Bifunctional nanocomposites with long-term stability, as SERS optical accumulators for ultrasensitive analysis,” J. Phys. Chem. C 113, 3373–3377 (2009).
[Crossref]

Nano Lett. (4)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009).
[Crossref] [PubMed]

M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors,” Nano Lett. 7, 3759–3765 (2007).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Nature Photonics (1)

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nature Photonics 1, 573–576 (2007).
[Crossref]

Nature Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys. 3, 477–480 (2007).
[Crossref]

Opt. Commun. (1)

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. A (1)

L. S. Froufe-Pérez, R. Carminati, and J. J. Sáenz, “Fluorescence decay rate statistics of a single molecule in a disordered cluster of nanoparticles,” Phys. Rev. A 76, 013835 (2007).
[Crossref]

Phys. Rev. B (3)

J. B. Gonzalez-Diaz, A. García-Martin, G. Armelles, J. M. García-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[Crossref]

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: An analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000).
[Crossref]

Phys. Rev. B. (1)

K. Hinsen, A. Bratz, and B. U. Felderhof, “Anisotropic dielectric tensor and the Hall effect in a suspension of spheres,” Phys. Rev. B. 23, 14995–15003 (1992).
[Crossref]

Phys. Rev. Lett. (4)

R. Gómez-Medina and J. J. Sáenz “Unusually strong optical interactions between particles in quasi-one-dimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
[Crossref]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz “Scattering Forces from the Curl of the Spin Angular Momentum of a Light Field,” Phys. Rev. Lett. 102, 113602 (2009).
[Crossref] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[Crossref] [PubMed]

J. Gómez Rivas, M. Kuttge, P. Haring Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of Surface Plasmon Polaritons on Semiconductor Gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[Crossref]

Physica (1)

D. Bedeaux and P. Mazur, “On the critical behaviour of the dielectric constant for a nonpolar fluid,” Physica 67, 23–54 (1973).
[Crossref]

Proc. IEEE (1)

A. D. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc. IEEE 68, 248–263 (1980).
[Crossref]

Small (1)

J. B. González-Diáz, J. M. García-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[Crossref] [PubMed]

Other (7)

H. C. van de Hulst, Light Scattering by small particles (Dover, New York, 1981).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1998).
[Crossref]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).

J. J. H. WangGeneralized Moment Methods in Electromagnetics (John Wiley, New York, 1991)

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999), 3rd edition, Chap. 6,9.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

(a) Sketch of the geometry for polar magneto optical Kerr effect (PMOKE) for a spherical nanoparticle. (b) Sketch of the geometry for transverse magneto optical Kerr effect (TMOKE) for a cylindrical nanoparticle.

Equations (60)

Equations on this page are rendered with MathJax. Learn more.

α 0 3 v ( ε ε h I ) ( ε + 2 ε h I ) 1
1 2 { V J * E 0 d 3 r } = P dis + P rad = P dis + 1 2 { s E s × H s * n ds }
1 2 ω { E 0 p } = P dis + c n h k 4 12 π ε 0 ε h p 2 =
1 2 ω ε 0 ε h { E 0 α E 0 } = P dis + c n h k 4 12 π ε 0 ε h E 0 α α E 0
k 3 6 π E 0 α α E 0 = { E 0 α E 0 } = { E 0 ( α α 1 ) α E 0 }
{ p α h 1 p } = 0 ; α h 1 { α 1 i k 3 6 π I }
α 1 = α h 1 i k 3 6 π I
p = ε 0 ε h α E inc = ε 0 ε h α ̂ E 0
× × G k 0 2 ε h G = I δ ( r r 0 ) ,
G ( r , r 0 ) | r r 0 = ( I + k 2 ) e ik r r 0 4 π r r 0 .
P rad = ω 3 μ 0 2 p { ( r 0 , r 0 ) } p
{ E 0 α ̂ E 0 } = k 2 E 0 α ̂ { ( r 0 , r 0 ) } α ̂ E 0
α ̂ 1 = α ̂ h 1 i k 2 { ( r 0 , r 0 ) }
α 1 = α h 1 i k 2 { G r 0 r 0 } .
E inc ( r 0 ) = E 0 ( r 0 ) + k 2 ε 0 ε h G b r 0 r 0 p = E 0 ( r 0 ) + k 2 G b r 0 r 0 α E inc
p = ε 0 ε h α ( I k 2 G b ( 0 ) α ) 1 E 0 = ε 0 ε h α ̂ E 0
α ̂ 1 = α 1 k 2 G b r 0 r 0 = α h 1 i k 2 { G r 0 r 0 } k 2 G b r 0 r 0
= ( α h 1 k 2 { G b r 0 r 0 } ) i k 2 { r 0 r 0 }
α ̂ h 1 = α h 1 k 2 { G b r 0 r 0 }
× × E k 0 2 ε h E = k 0 2 ( ε ( r ) ε h I ) . E
E ( r ) = E 0 ( r ) + k 0 2 G r r′ ( ε ( r′ ) ε h I ) E ( r′ ) d 3 r′
E ( r ) E 0 ( r ) + k 0 2 G r r 0 v ( ε ε h I ) E inside ( r 0 )
= E 0 ( r ) + k 2 ε 0 ε h G r r 0 . p
E inside = E 0 ( r 0 ) + k 0 2 ( G r 0 r′ d 3 r′ ) ( ε ε h I ) . E inside
= E 0 ( r 0 ) + k 0 2 v G ( ε ε h I ) . E inside
E inside = { I k 0 2 v G ( ε ε h I ) } 1 E 0 ( r 0 ) .
v G ( G r 0 r′ d 3 r′ ) v 0 = ( 1 k 2 L + M )
E inside = { I k 0 2 ( 1 k 2 L + M ) ( ε ε h I ) } 1 E 0 ( r 0 ) ,
α = v ( ε ε h I ) { I k 0 2 ( 1 k 2 L + M ) ( ε ε h I ) } 1
α = α h { I i k 3 6 π α h } 1
α h = v ( ε ε h I ) { ε h I + ( L k 2 M R ) ( ε ε h I ) } 1 .
L k 2 M R = 1 3 { 1 ( ka ) 2 + } I .
α h 3 v ( ε ε h I ) ( ε + 2 ε h I ( ka ) 2 ( ε ε h I ) ) 1
G ρ ρ 0 | ρ ρ 0 = ( I + k 2 ) i 4 H 0 ( k ρ ρ 0 ) )
α 1 = i k 2 8 ( I + u z u z ) + α h 1
G A 0 { 1 2 k 2 A + i 1 8 } I t + i 1 4 u z u z
α = α 0 { I i k 2 8 ( I + u z u z ) α 0 } 1
α 0 = 2 A ( ε ε h I ) ( I t ( ε + ε h I ) + 2 u z u z ) 1
α 0 zz = A ( ε ε h )
α 0 xx = α 0 yy = 2 A ε ε h ε + ε h
ε = ( ε ε xy 0 ε yx ε 0 0 0 ε ) .
α 0 xx = α 0 yy = 3 v ε 0 ( ε 1 ) ( ε + 2 ) Q 2 ε 2 ( ε + 2 ) 2 Q 2 ε 2
α 0 yx = α 0 xy * = i 3 v ε 0 3 Q ε ( ε + 2 ) 2 Q 2 ε 2
α 0 zz = 3 v ε 0 ε 1 ε + 2
R yx R xx = α yx α xx = R yx R xx e i δ θ + i φ
R yx R xx = { 3 Q ε ( ε 1 ) ( ε + 2 ) Q 2 ε 2 sin δ } e i δ
1 tan δ = C ( 1 α 0 yx α 0 xx 2 ) , C k 0 3 6 π ε 0 α 0 xx
φ 3 ε + 2 ε ε 1 Q
θ 2 ( ε + 2 ) 2 ( k 0 a ) 3 ε Q
R yx R xx = i ( r + r r + + r ) θ + i φ
r ± i ( n ± 2 1 ) k 0 d 2 ( n ± 4 1 ) ( k 0 d 2 ) 2 +
φ ε ε 1 Q
θ k 0 d 2 ε Q
α 0 xx = α 0 yy = 2 A ε 0 ( ε 1 ) ( ε + 1 ) Q 2 ε 2 ( ε + 1 ) 2 Q 2 ε 2
α 0 yx = α 0 xy * = i 2 A ε 0 2 Q ε ( ε + 1 ) 2 Q 2 ε 2
α 0 zz = A ε 0 ( ε 1 )
Δ I 0 I 0 I 0 ( Q ) I 0 ( Q ) I 0 ( Q ) + I 0 ( Q ) = I 0 ( Q ) I 0 ( Q ) 2 I 0 ( Q = 0 ) = 2 Re { α yx α xx } tan ( 2 𝛝 )
Δ I 0 I 0 = 2 Q ε ( ε 1 ) ( ε + 1 ) Q 2 ε 2 sin ( 2 δ ) tan ( 2 𝛝 )
1 tan δ = k 0 2 8 ε 0 α 0 xx ( 1 α 0 yx α 0 xx 2 )
Δ I 0 I 0 2 Q ε ( ε + 1 ) 2 π 4 ( k 0 a ) 2 tan ( 2 𝛝 )

Metrics