Abstract

Experimental results obtained by means of a cut-back technique indicate low attenuations (< 1 dB·cm−1) for a solid core photonic crystal fiber filled with the nematic liquid crystal E7. These results observed in the visible wavelength range are compared with electromagnetic field simulations. The latter are carried out with a full vectorial finite element algorithm. Based on the modal properties under the condition of perpendicular anchoring of the liquid crystal molecules, the wavelength dependent attenuation is estimated using a power loss model considering the turbidity of the nematic liquid crystal. The results indicate that the scattering properties of this type of materials make them extremely interesting for fiber optical filters in the visible wavelength range and that filling materials with a relatively high turbidity are in general potentially useful as filling materials for solid core photonic crystal fibers.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  2. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13(1), 309–314 (2005).
    [CrossRef] [PubMed]
  3. G. B. Ren, P. Shum, L. R. Zhang, X. Yu, W. J. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32(9), 1023–1025 (2007).
    [CrossRef] [PubMed]
  4. M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
    [CrossRef] [PubMed]
  5. C. Hu and J. R. Whinnery, “Losses Of a Nematic Liquid-Crystal Optical-Waveguide,” J. Opt. Soc. Am. 64(11), 1424–1432 (1974).
    [CrossRef]
  6. A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
    [CrossRef]
  7. H.-S. Kitzerow, A. Lorenz, and H. Matthias, “Tuneable photonic crystals obtained by liquid crystal infiltration,” Phys. Status Solidi 204(11), 3754–3767 (2007) (a).
    [CrossRef]
  8. G. D. Ziogos and E. E. Kriezis, “Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,” Opt. Quantum Electron. 40(10), 733–748 (2008).
    [CrossRef]
  9. LMA-10, NKT Photonics A/S, Denmark (formerly Crystal Fiber A/S).
  10. J. Jasapara, T. H. Her, R. Bise, R. Windeler, and D. J. DiGiovanni, “Group-velocity dispersion measurements in a photonic bandgap fiber,” J. Opt. Soc. Am. B 20(8), 1611–1615 (2003).
    [CrossRef]
  11. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Wave-Guides in SiO2-Si Multilayer Structures,” Appl. Phys. Lett. 49, 13–15 (1986).
    [CrossRef]
  12. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [CrossRef]
  13. L. Scolari, S. Gauza, H. Q. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S. T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express 17(5), 3754–3764 (2009).
    [CrossRef] [PubMed]
  14. G. Tartarini, T. Alkeskjold, L. Scolari, A. Bjarklev, and P. Bassi, “Spectral properties of liquid crystal photonic bandgap fibres with splay-aligned mesogens,” Opt. Quantum Electron. 39(10-11), 913–925 (2007).
    [CrossRef]
  15. S. V. Burylov, “Equilibrium configuration of a nematic liquid crystal confined to a cylindrical cavity,” Sov. Phys. JETP 85(5), 873–886 (1997).
    [CrossRef]
  16. M. Green and S. J. Madden, “Low loss nematic liquid crystal cored fiber waveguides,” Appl. Opt. 28(24), 5202–5203 (1989).
    [CrossRef] [PubMed]
  17. R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
    [CrossRef] [PubMed]
  18. J. Sun, C. C. Chan, and N. Ni, “Analysis of photonic crystal fibers infiltrated with nematic liquid crystal,” Opt. Commun. 278(1), 66–70 (2007).
    [CrossRef]
  19. S. M. Hsu and H. C. Chang, “Characteristic investigation of 2D photonic crystals with full material anisotropy under out-of-plane propagation and liquid-crystal-filled photonic-band-gap-fiber applications using finite element methods,” Opt. Express 16(26), 21355–21368 (2008).
    [CrossRef] [PubMed]
  20. J. Weirich, J. Laegsgaard, L. Scolari, L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Biased liquid crystal infiltrated photonic bandgap fiber,” Opt. Express 17(6), 4442–4453 (2009).
    [CrossRef] [PubMed]
  21. COMSOL 3.5a, Comsol Multiphysics®, http://www.comsol.com .
  22. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
    [CrossRef] [PubMed]
  23. G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101(7), 73105 (2007).
    [CrossRef]
  24. P. G. de Gennes, “Long Range Order and Thermal Fluctuations in Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 7(1), 325–345 (1969).
    [CrossRef]
  25. D. Langevin and M.A. Bouchiat, “Anisotropy of the turbidity of an oriented nematic liquid crystal,” J. Physique Colloques, C197 (1975).
  26. K. Simonyi, Foundations of Electrical Engineering (Elsevier 1964).
  27. M. A. Khashan and A. Y. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2-3 μm,” Opt. Commun. 188(1-4), 129–139 (2001).
    [CrossRef]

2009

2008

2007

H.-S. Kitzerow, A. Lorenz, and H. Matthias, “Tuneable photonic crystals obtained by liquid crystal infiltration,” Phys. Status Solidi 204(11), 3754–3767 (2007) (a).
[CrossRef]

G. Tartarini, T. Alkeskjold, L. Scolari, A. Bjarklev, and P. Bassi, “Spectral properties of liquid crystal photonic bandgap fibres with splay-aligned mesogens,” Opt. Quantum Electron. 39(10-11), 913–925 (2007).
[CrossRef]

G. B. Ren, P. Shum, L. R. Zhang, X. Yu, W. J. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32(9), 1023–1025 (2007).
[CrossRef] [PubMed]

J. Sun, C. C. Chan, and N. Ni, “Analysis of photonic crystal fibers infiltrated with nematic liquid crystal,” Opt. Commun. 278(1), 66–70 (2007).
[CrossRef]

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101(7), 73105 (2007).
[CrossRef]

2006

2005

2004

2003

2002

2001

M. A. Khashan and A. Y. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2-3 μm,” Opt. Commun. 188(1-4), 129–139 (2001).
[CrossRef]

1997

S. V. Burylov, “Equilibrium configuration of a nematic liquid crystal confined to a cylindrical cavity,” Sov. Phys. JETP 85(5), 873–886 (1997).
[CrossRef]

1994

R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
[CrossRef] [PubMed]

1989

1986

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Wave-Guides in SiO2-Si Multilayer Structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

1975

D. Langevin and M.A. Bouchiat, “Anisotropy of the turbidity of an oriented nematic liquid crystal,” J. Physique Colloques, C197 (1975).

1974

1969

P. G. de Gennes, “Long Range Order and Thermal Fluctuations in Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 7(1), 325–345 (1969).
[CrossRef]

Abbate, G.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101(7), 73105 (2007).
[CrossRef]

Abeeluck, A. K.

Alkeskjold, T.

G. Tartarini, T. Alkeskjold, L. Scolari, A. Bjarklev, and P. Bassi, “Spectral properties of liquid crystal photonic bandgap fibres with splay-aligned mesogens,” Opt. Quantum Electron. 39(10-11), 913–925 (2007).
[CrossRef]

Alkeskjold, T. T.

Anawati, A.

Argyros, A.

Bartelt, H.

Bassi, P.

G. Tartarini, T. Alkeskjold, L. Scolari, A. Bjarklev, and P. Bassi, “Spectral properties of liquid crystal photonic bandgap fibres with splay-aligned mesogens,” Opt. Quantum Electron. 39(10-11), 913–925 (2007).
[CrossRef]

Birks, T. A.

Bise, R.

Bjarklev, A.

Bouchiat, M.A.

D. Langevin and M.A. Bouchiat, “Anisotropy of the turbidity of an oriented nematic liquid crystal,” J. Physique Colloques, C197 (1975).

Broeng, J.

Burylov, S. V.

S. V. Burylov, “Equilibrium configuration of a nematic liquid crystal confined to a cylindrical cavity,” Sov. Phys. JETP 85(5), 873–886 (1997).
[CrossRef]

Chan, C. C.

J. Sun, C. C. Chan, and N. Ni, “Analysis of photonic crystal fibers infiltrated with nematic liquid crystal,” Opt. Commun. 278(1), 66–70 (2007).
[CrossRef]

Chang, H. C.

Cordeiro, C. M. B.

Crawford, G. P.

R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
[CrossRef] [PubMed]

Da, N.

de Gennes, P. G.

P. G. de Gennes, “Long Range Order and Thermal Fluctuations in Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 7(1), 325–345 (1969).
[CrossRef]

De Stefano, L.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101(7), 73105 (2007).
[CrossRef]

DiGiovanni, D. J.

Doane, J. W.

R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
[CrossRef] [PubMed]

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Wave-Guides in SiO2-Si Multilayer Structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Eggleton, B. J.

Eskildsen, L.

Gauza, S.

Giocondo, M.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101(7), 73105 (2007).
[CrossRef]

Granzow, N.

Green, M.

Headley, C.

Her, T. H.

Hermann, D.

Hsu, S. M.

Hu, C.

Jasapara, J.

Khashan, M. A.

M. A. Khashan and A. Y. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2-3 μm,” Opt. Commun. 188(1-4), 129–139 (2001).
[CrossRef]

Kitzerow, H.-S.

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
[CrossRef]

H.-S. Kitzerow, A. Lorenz, and H. Matthias, “Tuneable photonic crystals obtained by liquid crystal infiltration,” Phys. Status Solidi 204(11), 3754–3767 (2007) (a).
[CrossRef]

Kobelke, J.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Wave-Guides in SiO2-Si Multilayer Structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Wave-Guides in SiO2-Si Multilayer Structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Kostival, B. C.

R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
[CrossRef] [PubMed]

Kriezis, E. E.

G. D. Ziogos and E. E. Kriezis, “Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,” Opt. Quantum Electron. 40(10), 733–748 (2008).
[CrossRef]

Laegsgaard, J.

Lægsgaard, J.

Langevin, D.

D. Langevin and M.A. Bouchiat, “Anisotropy of the turbidity of an oriented nematic liquid crystal,” J. Physique Colloques, C197 (1975).

Leon-Saval, S. G.

Li, J.

Litchinitser, N. M.

Lorenz, A.

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008).
[CrossRef]

H.-S. Kitzerow, A. Lorenz, and H. Matthias, “Tuneable photonic crystals obtained by liquid crystal infiltration,” Phys. Status Solidi 204(11), 3754–3767 (2007) (a).
[CrossRef]

Luan, F.

Luo, J.

Madden, S. J.

Marino, A.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101(7), 73105 (2007).
[CrossRef]

Matthias, H.

H.-S. Kitzerow, A. Lorenz, and H. Matthias, “Tuneable photonic crystals obtained by liquid crystal infiltration,” Phys. Status Solidi 204(11), 3754–3767 (2007) (a).
[CrossRef]

Mazzulla, A.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101(7), 73105 (2007).
[CrossRef]

Nassif, A. Y.

M. A. Khashan and A. Y. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2-3 μm,” Opt. Commun. 188(1-4), 129–139 (2001).
[CrossRef]

Ni, N.

J. Sun, C. C. Chan, and N. Ni, “Analysis of photonic crystal fibers infiltrated with nematic liquid crystal,” Opt. Commun. 278(1), 66–70 (2007).
[CrossRef]

Peng, M.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Wave-Guides in SiO2-Si Multilayer Structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Polak, R. D.

R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
[CrossRef] [PubMed]

Ren, G. B.

Russell, P. S. J.

Schmidt, M. A.

Schwuchow, A.

Scolari, L.

Shum, P.

Sun, J.

J. Sun, C. C. Chan, and N. Ni, “Analysis of photonic crystal fibers infiltrated with nematic liquid crystal,” Opt. Commun. 278(1), 66–70 (2007).
[CrossRef]

Tartarini, G.

G. Tartarini, T. Alkeskjold, L. Scolari, A. Bjarklev, and P. Bassi, “Spectral properties of liquid crystal photonic bandgap fibres with splay-aligned mesogens,” Opt. Quantum Electron. 39(10-11), 913–925 (2007).
[CrossRef]

Tkachenko, V.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101(7), 73105 (2007).
[CrossRef]

Tong, W. J.

Vita, F.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101(7), 73105 (2007).
[CrossRef]

Wei, L.

Weirich, J.

Whinnery, J. R.

Windeler, R.

Wondraczek, L.

Wu, S. T.

Xianyu, H. Q.

Yu, X.

Zhai, L.

Zhang, L. R.

Ziogos, G. D.

G. D. Ziogos and E. E. Kriezis, “Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,” Opt. Quantum Electron. 40(10), 733–748 (2008).
[CrossRef]

Zumer, S.

R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Wave-Guides in SiO2-Si Multilayer Structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

J. Appl. Phys.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101(7), 73105 (2007).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

P. G. de Gennes, “Long Range Order and Thermal Fluctuations in Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 7(1), 325–345 (1969).
[CrossRef]

Opt. Commun.

M. A. Khashan and A. Y. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2-3 μm,” Opt. Commun. 188(1-4), 129–139 (2001).
[CrossRef]

J. Sun, C. C. Chan, and N. Ni, “Analysis of photonic crystal fibers infiltrated with nematic liquid crystal,” Opt. Commun. 278(1), 66–70 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

G. Tartarini, T. Alkeskjold, L. Scolari, A. Bjarklev, and P. Bassi, “Spectral properties of liquid crystal photonic bandgap fibres with splay-aligned mesogens,” Opt. Quantum Electron. 39(10-11), 913–925 (2007).
[CrossRef]

G. D. Ziogos and E. E. Kriezis, “Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,” Opt. Quantum Electron. 40(10), 733–748 (2008).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994).
[CrossRef] [PubMed]

Phys. Status Solidi

H.-S. Kitzerow, A. Lorenz, and H. Matthias, “Tuneable photonic crystals obtained by liquid crystal infiltration,” Phys. Status Solidi 204(11), 3754–3767 (2007) (a).
[CrossRef]

Sov. Phys. JETP

S. V. Burylov, “Equilibrium configuration of a nematic liquid crystal confined to a cylindrical cavity,” Sov. Phys. JETP 85(5), 873–886 (1997).
[CrossRef]

Other

LMA-10, NKT Photonics A/S, Denmark (formerly Crystal Fiber A/S).

D. Langevin and M.A. Bouchiat, “Anisotropy of the turbidity of an oriented nematic liquid crystal,” J. Physique Colloques, C197 (1975).

K. Simonyi, Foundations of Electrical Engineering (Elsevier 1964).

COMSOL 3.5a, Comsol Multiphysics®, http://www.comsol.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Representative structure of a solid core photonic crystal fiber used in the simulation process. Light microscopic image of the LMA-10 fiber as inset.

Fig. 2
Fig. 2

Escaped radial director field. a) y,z-cross section b) x,y-cross section.

Fig. 3
Fig. 3

Measured attenuation of the filled fiber versus wavelength.

Fig. 4
Fig. 4

Core mode of the liquid crystal filled photonic crystal fiber. The intensity is plotted as shade and the x- and y-components of the electric field vector are indicated by arrows. a) core mode at 614 nm, amode = 0.24 dB·cm−1, neff = 1.4569, nsilica = 1.4576, b) core mode at 707 nm, amode = 3.7 dB·cm−1, neff = 1.4543, nsilica = 1.4553.

Fig. 5
Fig. 5

Selected inclusion modes of the liquid crystal filled photonic crystal fiber. The intensity is plotted as shade and the x- and y-components of the electric field vector are indicated by arrows. a) inclusion mode at 616 nm, amode = 18.2 dB·cm−1, neff = 1.4579, nsilica = 1.4575, b) inclusion mode at 705 nm, amode = 11.8 dB·cm−1, neff = 1.4554= nsilica .

Fig. 6
Fig. 6

Measured attenuation (dots) and simulated attenuation (stars) of the filled fiber versus wavelength.

Fig. 7
Fig. 7

Simulated attenuation (left scale, solid line) and simulated chromatic dispersion D (right scale, dotted line) of the filled fiber versus wavelength.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

a = 10 log ( I l d I l ) d 1 .
ε α β = n o 2 δ α β + ( n e 2 n o 2 ) v α v β ,
v z = R i 2 ( x i 2 + y i 2 ) R i 2 + ( x i 2 + y i 2 ) .
ε ¯ ¯ = ( n o 2 0 0 0 n o 2 0 0 0 n o 2 ) + ( n e 2 n o 2 ) ( 1 v z 2 ) ( x i 2 + y i 2 ) ( x i 2 x i y i 0 x i y i y i 2 0 0 0 0 ) .
n ( λ 0 ) = A + B λ 0 2 + C λ 0 4 .
D = ω 2 2 π c v g d v g d ω ,
v g = c n eff ( ω ) + ω d n eff d ω .
n = n ' i n ' ' ,
ε r = n 2 ε r = n ' 2 2 i n ' n ' ' n ' ' 2 ,
Re ( ε r ) = n ' 2 n ' ' 2 ,
Im ( ε r ) = 2 n ' n ' ' .
α 0 , l c = π λ 0 2 k T Δ ε K 33 n o ' 2 .
N ( z ) = A S ( z ) d A = A 1 2 ( E ( z ) × H * ( z ) ) d A ,
p V = 1 2 ω ε 0 ε r ' ' | E 2 | ,
P ' ( z ) = A p V d A ,
α f i b e r = P ' ( z ) N ( z ) ,
4 π n ' ' λ 0 = π λ 0 2 k T Δ ε K 33 n o ' 2 n ' ' l c = 1 4 λ 0 k T Δ ε K 33 n o ' 2 .
n ¯ ' = 2 3 ( n o ' ) 2 + 1 3 ( n e ' ) 2 ,
ε ¯ ' ' = 1 2 λ 0 k T Δ ε K 33 n o ' 2 2 n o ' 2 + n e ' 2 3 .
P ' i ( z ) = A i 1 2 ω ε ' ' | E 2 | d A = π c λ 0 ε ¯ ' ' A i | E 2 | d A P ' i ( z ) = π c 2 λ 0 2 k T Δ ε K 33 n o ' 2 2 n o ' 2 + n e ' 2 3 A i | E 2 | d A .

Metrics