Abstract

We propose a new class of resonant silicon optical devices, consisting of a ring resonator coupled to a Mach-Zehnder interferometer, which is passively temperature compensated by tailoring the optical mode confinement in the waveguides. We demonstrate operation of the device over a wide temperature range of 80 degrees. The fundamental principle behind this work can be extended to other photonic devices based on resonators such as modulators, routers, switches and filters.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
    [CrossRef]
  2. A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
    [CrossRef]
  3. L. C. Kimerling, “Photons to the rescue: Microelectronics becomes microphotonics,” Electrochemical Society Interface 9, 28–31 (2000).
  4. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam) 34(1), 149–154 (1967).
    [CrossRef]
  5. M. Lipson, “Compact Electro-Optic Modulators on a Silicon Chip,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1520–1526 (2006).
    [CrossRef]
  6. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  7. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, “Optical modulation and detection in slotted Silicon waveguides,” Opt. Express 13(14), 5216–5226 (2005).
    [CrossRef] [PubMed]
  8. F. J. Mesa-Martinez, M. Brown, J. Nayfach-Battilana, and J. Renau, “Measuring power and temperature from real processors,” in IEEE International Symposium on Parallel and Distributed Processing (IEEE, Miami, FL, 2008), pp. 1–5.
  9. P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-Insensitive Silicon Microdisk Resonators Using Polymeric Cladding Layers,” in Conference on Lasers and Electro-Optics, p.CMAA4 (2009).
  10. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32(13), 1800–1802 (2007).
    [CrossRef] [PubMed]
  11. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [CrossRef] [PubMed]
  12. L. Zhou, K. Kashiwagi, K. Okamoto, R. Scott, N. Fontaine, D. Ding, V. Akella, and S. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
    [CrossRef]
  13. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [CrossRef]
  14. R. Amatya, C. W. Holzwarth, F. Gan, H. I. Smith, F. Kärtner, R. J. Ram, and M. A. Popovic, “Low Power Thermal Tuning of Second-Order Microring Resonators,” in Conference on Lasers and Electro-Optics/ Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, p.CFQ5 (2007).
  15. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33(19), 2185–2187 (2008).
    [CrossRef] [PubMed]
  16. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, p.CPDB10 (2009).
  17. P. P. Absil, J. V. Hryniewicz, B. E. Little, R. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12(4), 398–400 (2000).
    [CrossRef]
  18. M. Terrel, M. J. F. Digonnet, and S. Fan, “Ring-coupled Mach-Zehnder interferometer optimized for sensing,” Appl. Opt. 48(26), 4874–4879 (2009).
    [CrossRef] [PubMed]
  19. M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009).
    [CrossRef] [PubMed]
  20. S. Manipatruni, L. Chen, and M. Lipson, “50 Gbit/s Wavelength Division Multiplexing using Silicon Microring Modulators,” in Group 4 Photonics, FC3 (IEEE, San Francisco, 2009).
  21. B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, “Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator,” Opt. Lett. 31(18), 2701–2703 (2006).
    [CrossRef] [PubMed]
  22. I. Shake, H. Takara, and S. Kawanishi, “Simple Measurement of Eye Diagram and BER Using High-Speed Asynchronous Sampling,” J. Lightwave Technol. 22(5), 1296–1302 (2004).
    [CrossRef]
  23. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley).

2009

2008

S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33(19), 2185–2187 (2008).
[CrossRef] [PubMed]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

2007

2006

2005

2004

2000

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12(4), 398–400 (2000).
[CrossRef]

L. C. Kimerling, “Photons to the rescue: Microelectronics becomes microphotonics,” Electrochemical Society Interface 9, 28–31 (2000).

1967

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam) 34(1), 149–154 (1967).
[CrossRef]

Absil, P. P.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12(4), 398–400 (2000).
[CrossRef]

Akella, V.

L. Zhou, K. Kashiwagi, K. Okamoto, R. Scott, N. Fontaine, D. Ding, V. Akella, and S. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Alduino, A.

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[CrossRef]

Apsel, A. B.

Baehr-Jones, T.

Baets, R.

Bergman, K.

Bogaerts, W.

Dalton, L.

Digonnet, M. J. F.

Ding, D.

L. Zhou, K. Kashiwagi, K. Okamoto, R. Scott, N. Fontaine, D. Ding, V. Akella, and S. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Dokania, R. K.

Dumon, P.

Fan, S.

Fontaine, N.

L. Zhou, K. Kashiwagi, K. Okamoto, R. Scott, N. Fontaine, D. Ding, V. Akella, and S. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Han, M.

Ho, P.-T.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12(4), 398–400 (2000).
[CrossRef]

Hochberg, M.

Hryniewicz, J. V.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12(4), 398–400 (2000).
[CrossRef]

Jen, A. K. Y.

Jian, X.

Joneckis, L. G.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12(4), 398–400 (2000).
[CrossRef]

Kashiwagi, K.

L. Zhou, K. Kashiwagi, K. Okamoto, R. Scott, N. Fontaine, D. Ding, V. Akella, and S. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Kawanishi, S.

Kimerling, L. C.

L. C. Kimerling, “Photons to the rescue: Microelectronics becomes microphotonics,” Electrochemical Society Interface 9, 28–31 (2000).

Lawson, R.

Lee, B. G.

Liao, Y.

Lipson, M.

Little, B. E.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12(4), 398–400 (2000).
[CrossRef]

Manipatruni, S.

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Moooka, T.

Morthier, G.

Okamoto, K.

L. Zhou, K. Kashiwagi, K. Okamoto, R. Scott, N. Fontaine, D. Ding, V. Akella, and S. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Paniccia, M.

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[CrossRef]

Poitras, C. B.

Pradhan, S.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Scherer, A.

Schmidt, B.

Scott, R.

L. Zhou, K. Kashiwagi, K. Okamoto, R. Scott, N. Fontaine, D. Ding, V. Akella, and S. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Shake, I.

Sherwood-Droz, N.

Small, B. A.

Sullivan, P. A.

Takara, H.

Teng, J.

Terrel, M.

Uenuma, M.

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam) 34(1), 149–154 (1967).
[CrossRef]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Wang, A.

Wang, G.

Wilson, R.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12(4), 398–400 (2000).
[CrossRef]

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Xu, Q.

Xu, Q. F.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yoo, S.

L. Zhou, K. Kashiwagi, K. Okamoto, R. Scott, N. Fontaine, D. Ding, V. Akella, and S. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Zhang, H.

Zhao, M.

Zhou, L.

L. Zhou, K. Kashiwagi, K. Okamoto, R. Scott, N. Fontaine, D. Ding, V. Akella, and S. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys., A Mater. Sci. Process.

L. Zhou, K. Kashiwagi, K. Okamoto, R. Scott, N. Fontaine, D. Ding, V. Akella, and S. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation,” Appl. Phys., A Mater. Sci. Process. 95(4), 1101–1109 (2009).
[CrossRef]

Electrochemical Society Interface

L. C. Kimerling, “Photons to the rescue: Microelectronics becomes microphotonics,” Electrochemical Society Interface 9, 28–31 (2000).

IEEE J. Sel. Top. Quantum Electron.

M. Lipson, “Compact Electro-Optic Modulators on a Silicon Chip,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1520–1526 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12(4), 398–400 (2000).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[CrossRef]

Nature

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Physica (Amsterdam)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam) 34(1), 149–154 (1967).
[CrossRef]

Proc. IEEE

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Other

F. J. Mesa-Martinez, M. Brown, J. Nayfach-Battilana, and J. Renau, “Measuring power and temperature from real processors,” in IEEE International Symposium on Parallel and Distributed Processing (IEEE, Miami, FL, 2008), pp. 1–5.

P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-Insensitive Silicon Microdisk Resonators Using Polymeric Cladding Layers,” in Conference on Lasers and Electro-Optics, p.CMAA4 (2009).

R. Amatya, C. W. Holzwarth, F. Gan, H. I. Smith, F. Kärtner, R. J. Ram, and M. A. Popovic, “Low Power Thermal Tuning of Second-Order Microring Resonators,” in Conference on Lasers and Electro-Optics/ Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, p.CFQ5 (2007).

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, p.CPDB10 (2009).

S. Manipatruni, L. Chen, and M. Lipson, “50 Gbit/s Wavelength Division Multiplexing using Silicon Microring Modulators,” in Group 4 Photonics, FC3 (IEEE, San Francisco, 2009).

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the device showing the various waveguide lengths and widths. The MZI is highlighted in blue and the ring in red. (b) Typical transmission spectrum for such a device with 40 mm ring radius and the MZI is balanced, i.e. the overall path lengths of the two arms are equal. (c) Change in optical path length with temperature for the ring and MZI. The devices are designed to have opposite and equal phase shifts with increase in temperature.

Fig. 2
Fig. 2

(a) Phase change induced by in ring and by the MZI with temperature. The inherent nonlinearity in the ring phase gives rise to distinct overcompensated and uncompensated regions. This behavior repeats itself after one temperature period Tper. (b) Corresponding resonance lineshapes at different temperatures within one temperature period. The resonance displays periodic oscillations centered at λ = λres.

Fig. 3
Fig. 3

(a) Resonance minima shift for different cases of compensation for a ring resonator with 40 mm radius, showing the oscillatory behavior with temperature. The monotonic drift of an uncompensated ring is also added for reference. (b) Resonance minima shift with temperature for different ring resonator radii. The resonances oscillate less for larger rings, as compared to smaller rings.

Fig. 4
Fig. 4

Optical microscope image of the device consisting of a 40 mm radius ring resonator coupled to a MZI whose lengths are shown. The coupling gap is 110 nm. SEM insets show the actual waveguide widths at various parts of the device.

Fig. 5
Fig. 5

Bar port transmission spectrum of the device, centered around 1565.6 nm, at different temperatures. The dots represent actual measured data, and the straight lines represent theoretical lineshapes at those temperatures.

Fig. 6
Fig. 6

Eye patterns of 1 Gbps input data at different temperatures overlaid. The probe wavelength was 1542.375 nm, which corresponds to a bar port resonance at base temperature (22.5 °C). The eye-patterns show error free operation over around 80 degrees.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ϕ R E M Z I ( T ) = T { phase ( t α e j β L Ring ( T ) 1 α t e j β L Ring ( T ) ) } + T ( β L M Z I ( T ) ) .
Δ λ min = ( λ 0 L Ring + χ L M Z I ) L Ring T ( T 2 β L Ring T tan 1 { 1 t 1 + t tan ( γ β L Ring T T 2 ) } )

Metrics